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PREFACE

In a bid to standardise higher education in the country, the University Grants
Commuission {(UGC) has introduced Choice Based Credit System (CBCS) based on
five types of courses viz. core, discipline specific, generic elective, ability and skill
enhancement for graduate students of all programmes at Honours level. This brings
in the semester pattern, which finds efficacy in sync with credit system, credit
transfer, comprehensive continuous assessments and a graded pattern of evaluation.
The objective is to offer learners ample flexibility to choose from a wide gamut of
courses, as also to provide them lateral mobility between various educational
institutions in the country where they can carry acquired credits. I am happy to note
that the University has been accredited by NAAC with grade ‘A’

UGC (Open and Distance Learning Programmes and Online Learning Programmes)
Regulations, 2020 have mandated compliance with CBCS for U.G. programmes for
all the HEIs in this mode. Welcoming this paradigm shift in higher education, Netaj
Subhas Open University (NSOU) has resolved to adopt CBCS from the academic
session 2021-22 at the Under Graduate Degree Programme level. The present
syllabus, framed in the spint of syllabi recommended by UGC, lays due stress on all
aspects envisaged in the curricular framework of the apex body on higher education.
It will be imparted to learners over the six semesters of the Programme.

Self Learning Materials (SLMs) are the mainstay of Student Support Services
(SSS) of an Open University. From a logistic point of view, NSOU has embarked
upon CBCS presently with SLMs in English / Bengali. Eventually, the English
version SLMs will be translated into Bengali too, for the benefit of learners. As
always, all of our teaching faculties contributed in this process. In addition to this we
have also requisitioned the services of best academics in each domain in preparation
of the new SLMs. I am sure they will be of commendable academic support. We look
forward to proactive feedback from all stakeholders who will participate in the
teaching-learning based on these study materials. It has been a very challenging task
well executed, and I congratulate all concerned in the preparation of these SLMs.

I wish the venture a grand success.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor

D:/Barun-2019/Netaji Subhas Open University/Mathmatics-New/Final File/Title/1/4th Prooff13/03/2022
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Unit-1 [J Limits of Functions

Structure

1.0. Objectives

1.1. Introduction
1.2, Pre requisites
1.3 Sequences in R
1.4, Limit of function

1.5, Summary

1.6. Excercise

1.0 Objectives

This unit gives
e Various types of functions and their classification
e Sequence of real number and its convergence
e Concept of limit of a real function

e Various properties of limit of a function such as algebric operation on limits,
sandwich property, etc.

1.1 Introduction

The limit of a function is a fundamental concept in analysis concerning the
behaviour of that function near a particular point. Although implicit in the development
of calculus of the 17th & 18th centuries, the modern idea of the limit of a function
goes back to Bolzano who, in 1817, introduced the basic of the epsilon-delta technique
to define limit of functions. The motion of a limit has many applications in modern
Calculus. In particular, the many definitions of continuity employ the limit. It also
appears in the definition of the derivative.
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1.2 Pre requisites

(or Recapitulation of prior elementary ideas that are needed to introduce the concept
of limit):

A. Functions
(1) Let 4 and B be two non-void subsets R & f:A— B is a rule of

correspondence that assigns to each x € A, a uniquely determined y € B or y = f(x).

The set of values of x for which f can be defined is known as Domain of f,
denoted by D, and the corresponding collection of y’s (as mentioned above) is known
as Range set of f generally denoted by R,

A few examples of £, D, and R, :

5x —x?
W Sx)=,)log.— }

f can be defined for those x for which 21 and this gives 1< x< 4

so D, =[1,4]

) f(x)= (x—i_]

l-x

£ can be defined only when x—lizo = l<x<ee & Dy =(1, o)
-x

-

(i) f (x) =cos ! ; Here we must have —1 < ; <1
4+2sinx 4+2sinx

& for this D= [—g+ 2km, %+2kn‘} where k1 =0,21,+£2,. ..
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Note that D, may be a closed and bounded interval, may be an open interval

(bounded or unbounded), union of intervals and so on.

(Readers are requested to verify the validity of D, as mentioned in above
examples and as well as to look for other functions and their domain).
M x#0
(iy Consider the function f:[-1, 1] R defined by f(x)=1q x°

0, x=0

Here D is an interval [—1, 1] but Rf = {—1_, 0, 1} which is not an interval.

(ii) Consider the function f:(~1, 1)—> R defined by f(x)= Vxe(-11)

X2 +1
1
Rf =(E, 1] 0r%<x$1_

Note that in D¢, —1 and +1 are not included but 1 1s included as right hand end

point in R,
We are interested to learn the reason for such differences of nature of D, & R/ .

Equal functions : 7, g - D— R are same (or equal) when f(x)=g(x) for

each xe D

2
'

Note that x and — are not same.
'

Operations on Functions : Let f and g be two functions having domain
D;(cR) and D,(c R) respectively. If D, D, #¢, then f*g, fg canbe defined
on DD, by

(i) (fxg)r=rf(x)tg(x) Vxe D D, and
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(fg)(x)=f(x) g(x) ‘v’xeDfﬂDg

Again deleting those points of D, (if any) for which g(x): 0, we can define

(£)61= 2 sere w2y 10, e =0}

Composition of functions : Let / and g be two functions such that
xeD;= f(x)e D, Inother words R, < D, Then we can define
(gof)(x)=g[f(x)]VxeD,.

go f 1s called the composite of two functions fand g.

Similarly, we can define ( f o g)(x) with appropriate restrictions.

In general (f o g)(x)#(go f)x). For example, f(x)= x> g(x)=sinx

Then (go /)x) = g(f(x)) =sinx’ & (f > g)x) = £ (g(x)) = f(sinx) =sin’ x .

Injective (one-one), Surjective (onto) and Bijective functions :
Let f:D—> R where p-R.

Iffor x, ye D, f(x)= f(y)= x=y, fis called injective or one-one function
S{x)=3x+4, xeR is Injective but g(x)=|x|, xeR is not Injective.
Let f:D— E where D,EcRR, obviously f(D)c E. Butif f(D)=E, we

say that £ is surjective or onto function. f:[1,2]—[2,3] defined by f(x)=x+1 is
onto function.

But f:[L, 2]—>[2, 4], f(x)=x+1 is not so,

7 7 5
Ee[z, 4] and 5_x+1=>x-?,z[1, 2].

f1s bijective if it is both injective and surjective.
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Invertible functions : Let f: X — Y where X,¥ c R be such that for each
yeY, there exists a single value of x such that f (x) = y. Then this correspondence

defines a function x=g(y). We say that £ is invertible and x = g(y)is the inverse
function. Note that if f be bijective, then fis invertible.

For example, if y =log,, (x+ \lx2+1)_, a>0,a#=1, then

|
3c=5(a!‘1 —-a “') or sinh(ylna)

Increasing function & Decreasing function :

Let f:D— R where D < R. If for each pair x, ye D,
x>y= f(x)2 f(y) or f(x)> f(y), we say that fis increasing function.

Butif x>y = f(x)< f(y) or f(x) < f(¥), we say that f is decreasing function.

S (x) = sin x is increasing in [0, g] but is decreasing in [%,n]

Periodic function

A function f: D — R(D c R} is periodic if there exists a number p such that
f(x+p)=f(x)Vx€D.

The smallest positive p for which f(x+ p)= f(x)¥x holds, is called the period
of £

Bounded and unbounded functions :

. D—- R(D c R) is said to be bounded above if there exists A €R such that
¥ (x) < AV¥x e D, we say that fis bounded above (by ?L) . If there exists )L R such
that f(x)2pVxe D, we say that f is bounded below (by ). If f be both bounded
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above & bounded below, then fis bounded on D, (= D). In other words, If there exists

K eR such that |f (x)| <K forall xe D, we say that fis bounded on D. For future
course of discussion the following concepts are useful.

Let f:D— R({D <R} be bounded above.

Then 7\,(6 R) is said to be the least upper bound or supremum of fin Dif 31 e R

such that (i) f{(x)<AVxeD and (ii) for any £>0,3 ye D such that f(y)>A—¢
(or in other words, no real « 3 1s an upper bound of /) this } = sup f If #be bounded
above, then sup f (e R) exists.

If #1s unbounded above we say that sup f = oo

Let f:D— R be bounded below. Then weR) is greatest lower bound or
infimum of fin D if

(i) f(x)zp forall xe D & (ii)if for any £>0,3 ye Dsuchthat f(y)<p+e,
then W = inf £ (in other words, no real > [0 is lower bound of /). Then p =inf £ If fbe
bounded below, then inf f (e R) exists.

If f be unbounded below, we write inf f = —o

Sup f - inf £ 1s known as oscillation of function f on D.

1.3 Sequences in R

(1) 4 function f: N — R is known as a sequence (note that N is the set of natural

numbers).
1 dn+3
E les : {{-1Y" - 2l ete.
xamples {( 1) }rr’{fl}n’{3fl+4}’{n }” o

Symbolically, {a,,}n (??—>a,,). Note that the range set of {(—1)”}n is the set

{ -1, 1} where as the range sets of the next three are infinite sets.
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A sequence {a, }n is bounded if its range set is bounded.

Foi 3n+4

H

Range sets of {(—1)"} , {l} , {4"4_3} are bounded but range set of {nz} is
n . n

not bounded.

(ii) Note that N is unbounded above, as there is no real AR for which
n<h VYnelN.

So an interesting question is that when n becomes arbitrary large without any

bound, then what will be the fate of {a,, }n ?

Consider the above examples : As » becomes larger and larger, 1 becomes
#

1
smaller & smaller we say that, the difference between ; and 0 decreases steadily.

1
Neither " coincides with zero nor it goes to the left side of 0. We say 1 — 0 (tends
1

2

to zero) as n# — <. But note that as n becomes arbitrarily large. #° increases more

rapidly & we say that #° — o as # — e In case of {(—1)"} , it is either +1 or —1.

Limit of a sequence in R : A sequence {a,,}” is said to converge to a limit

/(e R) if for arbitrary ¢ > 0, there exists natural number m (e N} such that |a, - /| <&

forall n=m.

lim a, = if for all G>0 there exists me N such that a,>G Vrn=m. We

H—0
say that {a,,}n diverges to co.
C g - 1 . .
To explain this definition, we take @, =— as mentioned earlier. We have seen
7

that l—>0 as n—r .
7
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7
let £=——. Then

1—0‘<L if n>@(=1429)

1000 1000’ 7
1
so m = 143 & for this [—-0|< ,n=2143
n
Let us change € = Then [——0]< 8 ifn>3439 =429z
8 3439 7] 3439 8 8
1 8 .
Som =430 & then |—-0|< 5 if =430
n

These two simple examples exhibit the dependence of #7 on the arbitrary positive
value of ¢.

We state the following results without proof at this stage :

(a) A Convergent sequence in R is necessarily bounded but a bounded sequence
it
may not be convergent (Ex {(—1) } )

(b) Limit of a sequence, if exists, is unique.
(c) Cauchy's general principle of convergence : A necessary & sufficient condition

for the convergence of {a,,}n is that given e€> 0, there exists natural number

m (e V) such that |a,?+p —a,?|<a VYnzm, peN.

(d) Sandwich rule : Let a, < b, <c, for all #2m (or for all ) and {a,,}”, {c, }n

both converge to same limit /(¢ R). Then lim b, exists & = /.
0

(1) Monotonic sequences in R

A sequence {an}n in R is said to be monotonic increasing if a,,; = a, for all ,

butif a,, <a, foralln, {a,,}n is said to be monotonic decreasing sequence in R .
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We state the following results without proof :

{a) A monotonic increasing sequence {a,, }n in R is convergent if and only if

{aﬂ}fI 1s bounded above and a, - supa,. If {a,,}n be unbounded above, then

il_l;‘; a, =<0 (diverges to oo )

(b) A monotonic decreasing sequence in R is convergent if and only if {a,, }n is

bounded below and and aq, —>inf a,. If {a,,r}i,I be unbounded below, then

lim a, =—= (diverges to — <)
Fi—y00

(iv) The following results are easily deducible following definition and basic
results :

If lim a, =/(eR), lim b, =m(< R), then

H—»0 H—0

lim (a,x5,),=/tm, lim(a,b,)=Im,

n—w0 H—oD

H—0 » m

lim [&J _L provided b, =0 Vn and m=0.

(¢) Accumulation point (or limit point) of a set
Let S(cR) beasetand EcR. £ is said to be an accumulation point (or limit

point) of S if there exists a sequence of distinct elements {X,,}n of § such that x, > &

as n— oo, ‘0’ is limit point of S={l:neN}. 1 is limit point of T{1+l:neN}
n n

etc. Note that 0e §, 17

Note that a finite set has no accumulation point. The set {J = {;:2; ne N} has no

accumulation point in [§ .
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(D) Neighbourhood of a point & Interior point of a set :

(i) Let xeR. By a &-neighbourhood of x, we mean the interval (x—8§, x+8)

where 8> 0. This is denoted by N{x,8) or N;(x).

The set N{x,8)—{x}is called the deleted §-neighbourhood (or &—nbd)of x,

denoted by N’(x,8) or N3(x). U(cR) isnbd of xeR if 3 an open interval I such

that xe 7 c U/ for example, (1 —l, 1+1J is a neighbourhood of 1. The set K (of
i n

all real numbers) 1s a neighbourhood of each of its points. The situation is different in
case of {J, the set of rational numbers for if £ € 0, then every (t’; -9, é‘;+6) contains

rational as well as irrational points also. So J is not a neighbourhood of its points.

(ii) Let DcR . We say that xe D is interior point of D if there exists a

neighbourhood of x, say (x—8&, x+ &), which is contained in D.
For example consider [a,5]={x:a < x <5}

Let a<c<b. wetake 0<d<min{c—a,b—c} &so (c-3,c+8)c(a,b),s0c¢
is interior point of the set but a, b are not interior points of it.

Accumulation point can also be defined as follows :

Let SCRand&eR. If every deleted neighbourhood of &, N*(£3)NS =0,

then & is accumulation point of .S.

This can be shown that N”(£,3)1S is an infinite set. On the basis of this

approach, it obviously follows that a finite set (C R) has no accumulation point.

On the basis of these pre-requisites, we are now in a position to introduce the
concept of limit of a function.
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1.4 Limit of function

Let f:D{(cR)— R and p be an accumulation point of D.

[

(A) Sequential approach : lim f(x)=/(eR) if for every sequence {x,}
x—>p

x,eD foralln, x, #x, if i=j, x,# p, converging to p, the sequences { f (xﬂ)}

n

converge to same limit /(e R).

If on the otherhand, { | (x”)}n converge to different limits for different {x,, }n ’s

we say that the limit does not exist.
To explain the matter, let us consider the following examples :

Example :

(i) lim sinl : Note that the sequences 2 and _2 both converge
¥=0 X 2nm ), (2n+1)m|

. . Ei .
to zero. But {sin# TC}H converges to zero whereas {sm (mt + EJ} is not convergent,

n

(n even and » odd give different limits). So by above definition, lim sinl does not

x—0 X
exist.
) fim L sin
=0 x x
1 1 .1 1
For x, = An(% 0), —sin— — 0 but for y, =——— -0

T gt

H=—pe —roe

lim £(y,)= lim (2n+%)ﬂ: sin(2n+%}t=w
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A R | .
So lim —sin— does not exist.
=0 x X

(B) (e -3 approach) let ¢ >0 be any number. If corresponding to such ¢, there

exists 0> 0 such that |f (x)—!‘ < & whenever x € N'(p,8)ND. we say that lim f(x)
—=p
exists and =/ (e R).

Here x<N'(p, 8)(1D can be written as 0<|x—p|<d or p-d<x<p,
p<x<p+d,xeD.

(C) The two definitions stated in (A) and (B) are equivalent

Proof : Let lim f(x)=/(<R) in the sense of ¢ —§ definition.

xp
Then for arbitrary ¢ > 0, there exists § > 0 such that
|f(x)—l‘ < & wherever 0<|x- p|<8 (i)
As p is accumulation point of D, so there exists a sequence
6.0 (x,, eD vn, x,=x; if i= j, x,=p for all n) which converges to p.
Hence corresponding to above 8> 0, there exists natural number s such that

0<|x,—p|<8 forall n2m (2)

Combining (1) & (2), | f(x,)-/|<e forall n2m
Note that m depends on ¢ (as m depends on § & § depends on ¢).

So lim f(x,)=/(c k) and {f (x,,)}n converges to /(e R).

H—ye

Next let lim f(x)=/(c R) following sequential criterion.
x—=p
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If possible let lim f(x)}=17 does not hold in the sense of €—& definition.

x—=p

Then for some number ¢ > (, the corresponding & does not exist. That indicates,

however small d>0 may be, there exists always at least x’(¢ p) for which
0 <[x'— p| <8 nonetheless | f(x')-/|z¢.

Let us consider a decreasing positive termed sequence {8,,} converging to zero
H

(in particular, &, = 1 for all #eN). Then for every 98,, x;, can be found such that

0t
H

0< |x; —p| < 8,, nonetheless |f (x;;)—:’| 2¢. 3, — 0= x, — p by Sandwich rule. By

assumption, { f (x;)}" converges to /. But | f (x;)—! |z €.

Thus we arrive at a contradiction. So €—9& definition follows from that of
sequential approach. Thus the two definitions are equivalent.

(D) One sided limits
{i) Let p be an accumulation point of D from the left (ie

X, = p.x,<pVnx,eD etc) or f has been defined in some left-deleted

neighbourhood of p. If for arbitrary €> 0, there exists §>0 such that |f(x)-/|<e

whenever p-8<x<p, we say that lim f(x) [or lim f(x)] exists and

x> p— x> p—0
=/,(eR). This is commonly known as left hand limit of f{x)as x— p.

(ii) Let p be an accumulation point of [J from the right (ie x, = p, x, > p Vn,
x, €D etc.) or f has been defined in some right deleted neighbourhood of p. If for

arbitrary €> 0, there exists 8>0 such that | f(x)—1|< & whenever p<x<p+8,

we say that ,\‘l—i)IB+ f(x) [Of lim f(x)) exists and =/, (€ R). This is commonly

= p+0

known as right hand limit of f{x)as x— p.
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(E) In this connection, the following result is useful in determining the existence
of limit. Let f:D — R where D cR and let p be (both sided) accumulation point
of D) (or f has been defined in both sided deleted neighbourhood of p).

Then lim f{x)=/(cR) if and only if lim f(x)— lim f(x)=1

x—=p x—>p—0 x—p+0

Proof : let im f(x)=/(cR)

x> p

Following ¢ —§ definition, corresponding to arbitrary &> Q, there exists §> 0

such that |f(x)—!‘< € whenever 0 <|x—p|<8,xeD

:>|f(x)—!|<8 whenever p—d<x<p aswellas p<x< p+39.

= lim f(x)=I/= lim f(x)

X—p- x—=p+

Converse let lim f(x)=7= lim f(x)
x— p+

X p—

Let £>0 be any number. Corresponding to €, there exists 8, >0,8, >0 such

that ‘f(x)—l|<8 whenever p-8, <x<p & ‘f(x)—l|<8 whenever p<x< p+38,

Let 8=min{5,,8,}. Then for 0<|x—p|<d, | f(x)-I|<e= lim f{x)=
.\‘—}p

Ix+7, x<1
2x+11 x>1

Examples (i) f(x)= {

Here lim f(x)=10, lim f(x)=13 & so0 llmf( ) does not exist.
== s=l+

Tx+3, x<2

Sx+1, x>2

@ f(x)={
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H lim f(x}=17, lim f(x}=17
ere x—=2- f( ) ,\‘l)2+ f( )
Let €>0 be any number. Corresponding to e, there exists §; >0,0, >0 such

. £ . _
that [7x+3-17|<e ie. |x—2|< 7 whenever 2-0; <x<2 &0 §, =% is admissible

€
& |8x+1—1?\ <gle. |x—2|< 3 whenever 2<x<2+08, & so0 §, =§ is admissible.

Taking 8 =min {5,,8,}, we get lim f(x)=17

x—=2

(F) Cauchy Criterion for the existence of limit

Let f:D — R where D R and p be an accumulation point of D.

A necessary and sufficient condition for the existence of lim f(x) is that given
= p

£> 0, there exists a deleted neighbourhood of p,N’(p,8) such that

F(x)-7(»)

<& whenever x,ye N’ {p,3)N D

Proof : Let lim f{x)=/(cR)

r=p
Let ¢ > 0 be any number. Corresponding to ¢, there exists a deleted neighbouhood

N’(p,8) such that |f(x)—!|<% whenever xe N’ (p,8)N D

If moreover ye N'(p,8)N D,

Fy)-1< % As a result,

|7 ()= F ()| | £ (x)=1|+|7 (¥)-1| < € holds.

Converse : Let for given £> 0, there exists a deleted neighbourhood N’(p,8)

such that |f (x)—f(y)|< € whenever x,y e N’(p,3)N\ D
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Let p be accumulation point of D. So there exists {x,, }n (x,, eDV,,x#x; if

% x, * p) which converges to p. Hence corresponding to above 8(> 0), there

exists me N such that x, e N’(p,8)N\D forall nz2m.
Therefore, | Fx,) = Fx )| <€ forallm, kzm.

So by Cauchy’s general principle of convergence of a sequence, { Vi (xn)} is
H

convergent and so |im f{x) exists.
x—)p

1, if x 1s rational

Dlustration : Let f:(0,1) - R be defined by fx)= {_1 if vis irrational

Let a<(0,1). Note that for any 8 >0, N'(a, 8)(1(0,1) contains both rational as
well as irrational points. If such rational be x & such irrational be v,

then | £ (x)— £ ()| =[1-(~1)| =2 ¢ arbitrary £ >0.

So by Cauchy Criterion, ll_lgf (x) does not exist.

(G) Infinite limits and Limit at infinity

(i) Infinite limits :

Let f:D— R and p be an accumulation point of D(c R). Then f(x) is said to

be tend to « as x — p, if given any (7 > 0 (as large as we please), there exists § >0
such that

f{x)>G whenever xe N'(p,8)ND.

If we opt for sequential approach, if for {x,,}n (x,, eDVnx;zx;ifi# j,x, = p)

converges to p, {f (xﬂ)}n diverges to oo, we say that !l_r}r:, f(x)=c

. R |
Mustration ;: m —=eo
=0T X
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1
For any G>0,l>(} ifx<5(—>0as(}—>oo).
x

If for given (G > 0 (as large as we please), there exists § >0 such that f (x) < =G
whenever x e N'(p,3)N1 D, we say that lim f (x}=—ee
r=p
(ii) Limit at infinity
Let f:D — R where [ is unbounded above.

If for given g > 0, there exists (7 > @ such that

|7 (x)—1|< € whenever x (G, )ND,

. L1
We say that lim f(x)=/(e R} ex-lim —=0

X—on Y=o X
Next let f: D — R where D is unbounded below.

If for given g > 0, there exists (7 > @ such that

|f (x)—l| < € whenever x e (~o, G), we say that }lelmf(x) =l R)

(1Y
Tllustration (1) }gn (1+;J =e¢e,xeR

To solve this, we will assume the very standard limit of sequence

lim [1+l)” _e(eR).

Fi—yoo L4

We can take x > 1. There exists natural number # such that

nsx<n+l

: m+l £ X H
:(1+l) >(1+1J >(1+L)
n X n+l
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1 n+l1 1 H 1
lim|1+— =lim<|1+=]| |1+—|t=e
"_’“[ ") F—yee [ ’J ( n} and

. “n e H+l
1im(1+LJ = lim (+50)" _

oo o 1
By ) n+1_ F—> 1+ povm ]

Y
So, lim [1+—) =¢

X—poo X

. (RN
(2) lim (1+;J =e

N——e

We take x=—) and So y — oo and X — —oo

S y . -
1 1) y Y 1Y 1

I+—| =|1-—| =|—/]| =[1+—— J1+— (= —eo

( xJ [ y] [y—l] [ y—l) [ y—l) a8y '

In this connection, we state the following result :

Let f:(a,o0)—> R, Then lf;f (¥} exists if and only if for every ¢> 0, there

exists X (>a) such that | £ (x)- f(y)|<eV x,y>X.
(iii) Infinite limits at infinity
Let f:D— R where D(c R) is unbounded above.
Let & > 0 be any number, as large as we please.

Corresponding to G, there exists K (e R) suchthat f{x)>G forall x> K , we say

that lim f(x):m.

X—poo

Let D be unbounded below, if corresponding to G > 0 (as large as we please), there

exists K (€ R) such that f(x)}>G forall x <K, we say that lim f(x)}=co.
X——o0

Butif f(x)<-G forall x< K, wesay lim f(x)=—=.

F—p—ca
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Example : limlog, x=c0, a>1
X—so

Let G > 0 be any arbitrary number. If we take a° =M | then
x>M =log,x>G Hence iglOgax=”.

(H) Some standard limits :

iy lim S0y
(1) =0 X
s 1+
(i1) lméM =log,e where a>0,a#1
K=
X
ity lim L =tna,a>0
0 X
i
(iv) lim i =na"! a>0
x—a X—d

(I) Algebra of limits :

Let g, f: D — Rwhen D c R and p be an accumulation point of D.

Let lim f(x)=/{eR), lim g(x)=m(e R).
A=p X p
Then (i) lim {f(x)tg(x)}=/tm
x—p

(i) lim {7 (x)g (x)} = im

. /
(iif) llmﬁ=g where g(x)=0 and m=0.

Proof : (i) Let ¢ > ( be any number. Corresponding to €, there exists 8, >0, 6, >0

such that |f(x)—1|<% whenever 0<|x- p|<$,, xe D and ‘g(x)—m|<§ whenever
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0<|x-p|<d,,xeD.
Let §=min{8,,3,}. Sofor 0<|x— p|<8, xe D both hold.
Hence [{f (x)x g (x)} - {1xm}|<|f (x)-1|+|g(x)-m|<e
whenever 0< |x—p|<d, xeD

= lim {f(x)t g(x)} =/tm=lim f(x)* lim g(x)

x—p xX—p X p
Note : (1) This result can be generalised for finite number of functions,

(2) The converse of the result is not true, in general

1, 1f x 1s rational 0,if xis rational
g(x)=

Lt f(x)={

0, 1f x1s irrational 1,if x is irrational

Let p e R . Every deleted #bd of p contains both rational (say «) and irrational b

(say) points. Then in case of both fand g, |f(a)—f(b)| or |g(a)—g(b)| =1+¢ arb ¢

So neither lim f(x)nor lim g(x) exists. But f{x}+g{(x)=1 and

X p X p

im { £ (x)+g(x)} =1

x=p

(i1) To establish it we will first show that as chl_l)n g(x) exists, so there exists a
deleted neighbourhood of p, in which g is bounded. ’

There exists 8 >0 such that [g(x)-m|<1 where O<|x-p|<8, xeD
(orxe N'(p,8)ND)

= |g(x)|<1+]m| in N'(p,5,)ND

= g is bounded in N’ (p,8,)ND
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| (x) g (x)—tm| = |g ()} 1 (%)~ [} + 1{g (x) - m)| <|g ()| £ (x) 1]+ 1| | (x)— ]

As lim g(x) exists, so there exists 8; >0 such that |g(x)| < A for some A€ R* in
x—=p

N'(p,8)ND .. (1)

Let € > 0 be any number, corresponding to ¢, there exists 8, > 0, §; > 0 such that

|f(x)—!|<% whenever xe N’(p,8,)N D ...(2)

and ‘g(x)—m|< whenever xe N'(p,8;)ND ...(3)

2l li+1)

Let 3=min{8,,8,,8;}. Thenin N’(p, 8)ND, by (1), (2), (3)

€ €
|f(x)g(x)—lm|<?vﬁ+|!|‘ 207140

=|f(x)g(x)-im|<e in N'(p,8)ND

= lim f(x)g(x)=lm=(lim f(x))(lim f(g))
x—=p x—p x—p
Note : (1) This result can be generalised for finite number of functions.

N | . L1
(2) limsin— does not exist but lim xsin—=0
=0 X = X

|
xsin—-—20
X

Let € > 0 be any number <|x]<€ whenever x € N'(0,8)N D, where
d=3(¢).

(3) If g(x) be bounded on D and lim f(x)=0, then lim f(x)g(x)exists =0.

x—=p x—=p
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Il ()= +111]g{x) =]
} m g (x) '

()

As lim g(x)=m(=0), there exists &, >0 such that

X=p

|g(x)—m|<@ whenever xe N'(p, §)ND ... (2)

= |g(x)[> @ whenever xe N'(p, §,)ND
Let € >0 be any number.

As lim f(x)=/, corresponding to g, there exits 8, >0 such that
X—p

|f(x)—!|<@ whenever xe N'(p, 8,)ND ... (3)

As lim g(x)=m, corresponding to ¢, there exists 8; >0 such that
xX—=p

2
|g(x)—m|< 46[:TL1) whenever x e N'(p, 8;)ND ... (4)

Let §=min{3,, §,, 8;}. So whenever xe N'(p, )N\ D, (2), (3) (4) hold.

el lepf
4 4(|!|+1)

Recalling 1.

£(x) i|< 2

g(x) m| |
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=‘L3c) ! —|< & whenever xe N'(p, 8)ND

(x) m

f) 1 lim f(x)

= lim = =227

—pg(x) m limg(x)
x—>p

1 1
Note ; Neither lim — nor lim sin— exists, but lim xsml exists & = 0.
x—=0x x=0 X x=0 X

So the Converse of (iii) is not, in general, true.

(ex—l)tanzx . tanx—sinx

INustration : Evaluate (1) lim 8 (2) lim
x—0 X

sin (x - E)
(3) 11m N 6/

s (\/_ 2¢cos x)

—1lim et -1 (sin;ur)2 ( 1 ]2
M50 Ux ) leosy

x . 2
=lim & _l_lim[w) ‘lim[ 12 )=1 (As all exist)
=0 x = X =0\ cos” x

x—0 X

So limit is 1.

25in2£
2

] |- .
@) limsmxg cosx)=lim smx‘ 1

x—0 X cosxy x—0 X COSX x2
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. sin—
_ smx_ 1_ 5 l=1_1_1‘l=l
x=0| x cosx | X 2 2 2
2

T m
(3) (Method of substitution) Put X — G =f and so ¥ — 3 Saind's

] . . sin ¢ ) sin ¢
Given limit = lim =lim

=0 ﬁ—Zcos[ng =0 /3 +~/3 cost +sint

ZSini cosr—' COS —
= lim t2 2r ;= lim t2 7 =1
—> J: L2 P | —> . ]
28in” — |+ 2s8in—cos— 3sin—+cos—
’[ 2) 2772 2

(J) Neighbourhood properties :
(a) Let f:D—>R, DcR and p be an accumulation point of D. Let

lim f(x)= K€ ). Then

(i) f is bounded in some deleted nbd of p

(1) If / be greater than some real number X, then there exists a deleted nbd of p
in which f(x)> K.

(ii1) If / be less than some real number [, then there exists a deleted nbd of pin
which f(x)<pu.

Proof : (i) Proved earlier in I{(i1)

() Let 0 < e < /- K . Corresponding to this £, then exists § > O such that

|f(x)-1|<e forall xe N(p,8)ND
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=/-g< f(x)<l+evxeN{(p,dND

Considering the above choice of €, f(x)> K in N'(p,8) D

(iii) As in (ii), taking O <e<pu—1.

{(byLet f,g:D— R where D(Cc R)& p be an accumulation point of D.

Let Im f(x)= A€ R), img(x) = BER)

If 4 < B, then there exists a deleted neighbourhood of p in which f{x) < g(x).

Proof : Let A<C <B.

As lim f(x)=4, there exists 8 >0 such that |f(x)-d4|<C~4 for all
xeN{(p,d)ND.

As lxi_lgg(x): B, there exists 3,>0 such that |g(x)-B|<B-C for all
xeN(p,8,)ND.

Let 8 = min {8],83} .Soin N'(p,5)( D, both hold.

In N'(p,3)ND, f(x}<C-A+A=C=B-(B-C)< g(x) holds.
(c) Sandwich property :
Let f,g.h: D — R where D(CR). Let f(x)<g(x)<h(x) forall xeD &letp

be an accumulation point of D. Given that ll_lgf x)=1 Ll_l}g Mx)y=lleR)
Then limg(x)=1.
xX—p

Proof : Let ¢ (0 be any number Corresponding to this ¢, there exists

8,>0,3,>0 suchthat |f(x)-I|<e in N(p.3)ND &|h(x)-!|<einN'(p,8,)ND.
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Let 8=min{3,8,} Soin N (p,8)ND,

I—e< f(x)< g(x)<h(x)<l+e=|g(x)-I|<e in N'(p,3)ND

So Lij)lgg(x)=f_

(d) f.g:D— R where D(c R), p be accumulation point of D and

let Im f(x)=HER), limg(x)=mER) If f(x)<g(x) inD, then /<m.

Proof : If possible let />m& leto<e< !I_Om , corresponding to such g, there

exists 8,8, > such that | f(x)~1|<e in N'(p,8)ND &|g(x)—m|<ein N(p,8,)ND.
If §=min{3,,8,}, thenin N'(p,5) D, both hold.

In N(p,8)ND, I-e<f(x)<g(x)<m+e>1-m<2e>10g <2 — absurd
as £>0.

Sol<m

[You cantake f(x)=1-x, g{x)=1+x where x>0. f{x)<g(x) forall x and

lim f(x)=1= lim g(x) ]

x—0+ x—0+

K. Infinitesimal :

(@) f:D—>R(DcR) is said to be infinitesimal as x —a if lim f(x)=0.

X—=ri¥
(b If f,g:D —> R are infinitesimals, then f + g, fg are also so.
(¢) If f:D — R be infinitesimal as x —>a and g: D — R be bounded, then fg

is mfinitesimal.

(d) We say f = o(g) (or fis of little —o/ of g over D) if
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f(x)=a(x)g(x) where o(x) is infinitesimal.

(e) We say f=0(g) (or fis of big —oh of g over DY if f(x)=B(x)g(x)

where B(x) is bounded on D.

(f) The functions f and g are of same order over D(cR), if f=0(g) and

g=0(f) simultaneously.

1.5 Summary

In this unit, we have defined the term functions and classified various type of
functions. We have defined real valued sequences and study limit of a real sequence.
We have explaind the concept of limit of functions and study some criterian for the
existence of limit. We also introduced the concept of infinite limits, himit at infimty,
neighbourhood properties. We have explained the Sandwich property and the concepts
of infimitesimal.

1.6 Exercise

1. Find the limits (if exist)

fim| X ¥
@ Sl 3x7 -4 3x+2

2x% +|x
(b) limﬂ
x—0 X
lim| 2=+3 |, lim| 41| g limd] 2=+3 |-[ =+1
(C) xl—n;(l) x2 ’ XIE‘(I) x2 and x—0 x2 x2
V(3x)-3

@ I —i-v2

{e) Apply Cauchy’s principle for the existence of limit to evaluate lin}) i+—x _
y=0]—-x



2. Choose the correct one : lim M
x—0 [ x]

(a) the limit exists and is 1
(b) the limit does not exist.

(c)ifat x=0, £(0)=0, the limit will exist

(d)yifat x=0, f(O) =1, the limit will exist.
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Unit-2 [ Continuity of Functions

Structure

2.0. Objectives

2.1. Introduction

2.2, Definition

2.3 Neighbourhood properties

2.4. Properties of functions continuous in a closed and bounded
interval [a, b]

2.5 Uniform continuity
2.6, Summary

2.7. Excercise

2.0 Objectives

This unit gives

e The concept of continuity of a real fuction

e Classification of discontinuity

e Neighbourhood properties of a continous function

e The behaviour of continuous function in a closed and bounded interval

e The concept of uniform continuity

2.1 Introduction

A general function from R to R can be very convoluted indeed, which means
that we will not be able to make many meaningful statements about general functions.
To develop a useful theory, we must instead restrict the ¢lass of functions we consider.
Intuitively we require that the functions be sufficiently ‘nice’, and see what properties
we can deduce from such restrictions. The study of continuous functions is a case in
point by requiring a function to be continuous, we obtain enough information to deduce

35
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powerful theorems, such as the Intermediate value theorem. However, the definition
of continuity is flexible enough that there are a wide, and interesting, variety of
continuous functions. Indeed, many functions that come up in real-world problems
are continuous, which makes the definition pleasing from both an aesthetic and practical
point of view.

2.2 Definition

I. (a) A function f:D—>R(DcR) is said to be continuous at peD if
given any ¢ > (), there exists § > ¢ such that

|7 (x)=f(p)| <& or f(x)eN(f(p). &) whenever xe N(p,8)ND.

If f is not continuous at p, then £ is discontinuous at p.

(b)yLet f:D>R(DcR) and peD.

(1) If p is an 1solated point of D (i.e. not a limit point of D), then f is
continuous at p (i) if p be limit point of D 1e. pe DD’ (p' is the collection of

limit points of D) and if lim f(x)=f(p), then fis continuous at p.
x—>p
(c) Continuity in an interval [a, 8] or in {x:a<x<b}
y—b-0

£ is continuous in [a, b] if (i) Jcli)r:r:@f(x): f(a) Giy lim f(x)=7(b) and

(iii) if a<c<p, then lim f(x)= lim 7(x)=f(c)

x, for xe{l—l:ne[‘\!}

Examples. 1. Let f(x)= 7

L forx=1

be defined on S={1—%|neN}U{l}‘



NSOU « CC-MT- 08 37

The only accumulation point of $ is 1 and all other points of S are its isolated

points. Here lim f (x)=/(1)=1= f is continuous at 1, fis also continuous at the
x—

. . 1 . .
isolated points 1-—:»7< N . Hence f is continuous on S
H

1

(1-x)

2. Let f(x):

x=1. Find the points of discontinuity of

y=r[F(F ()]

x=1 is a point of discontinuity of f(x).

If x=1, f[f(x)]: = _1,x¢0:>x:0 is a point of

discontinuity of /[ /f(x)].

If x0, x=1, y= T=X 15 continuous everywhere,

1- X1
X

So points of discontinuity of the given composite function are x=0, x=1.

(3) Let E:{l—l\neN|}>U[1, 2] and f:E >R be defined by f(x)=x".
1

Each 1—l is isolated point of £ and so by definition, f 1s continuous at all such
n
points.
Let pe[l, 2]. Then pe ENE' (g derived set of E) and then x* — p? or

f(x)> 7(p). So fis continuous at p.
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Thus f is continuous on E.
(Continuation of definiton (d)) f:D — R where D(c R) and pe DND".

£ is continuous at p if for every sequence
{xﬁ}n(x“eD vn, x=x; f i=zj, x, :tp) converging to p, {f(x")}n
converges to f(p).

Examples (1) Let A={xeR|x>0} and let f:4—> R be defined by

0, if x is irrational
Xi=

/() l, it x=2" where mneN and (m,n)=1
H H

To examine the continuity of / in 4.

We require the following lemma :

Let 7 be any irrational number between 0 and 1.

Let p, ¢, 1 be any positive integers such that p<g<n and » is fixed. Then
there exists a neighbourhood of 7 which has the property that no rational number of

P )
the form E belongs to it.

. P
Proof of lemma : Let d be the least of the differences |/ _E for all p, g such

that p<g<n.Let § be chosen so that 0 <§ <. Then (i—8, i+8), a nbd of ,

which has the property stated above.
Let us now examine the continuity of f.

Let » be any irrational number and let g > 0.

Now there exists #, €N such that 7,e>1 (known as Archimedean property of

real numbers). By above lemma, § >0 can be chosen so small that the nbd

(5—8, b+8) contains no rational number with denominator <.
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If then follows that for x-5|<5&, x€ A, we have
|f(x)—f(b)| :|f(x)| <Lles £ is continuous at irrational point 5.
Hy

Let ac A be any rational point. Let {X,,}n be any sequence of irrational

numbers in A that converges to a. Then lim f (x,)=0 where as f(a)>0. Hence
£ is discontinuous at all rational points.

(2) (Dirichlet’s function) f:R — R be defined by

1, if x be rational

f(x)={

Applying sequential approach, it can be shown that f is discontinuous
everywhere.

0, if x be irrational

(3) Let f(x):{x’ if x 1s rational

l1—x, if x 1s irrational

To investigate the continuity of f on R.

Let ¢ > (0 be any number,

1] . . .
x—E‘, if x is rational

1
‘f(x)—f[—J|=
2 1 1| . N
ll—x—E’: x——|, if x is irraticnal

E

So <€ whenever < 6(= 3) )

f(x)—f[§]|=

1
X—_
2

1
x—_
2

. . 1
f1s continuous at x = 5
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1 N N
Next let x# > and x 1s rational. Let {xn}n be a sequence of irrationals such

that hmx,=x.So f(x,)=1-x,>1-x as n >
H—r0

As xié, so x=1-x and f is discontinuous on Q—{%}.

Next let x be irrational number and let {y,,}n be a sequence of rational

numbers such that li_l>1‘ly,,zx. Here f(y,)=y,—>x as n—>x. But f(x)=1-x.

So lim f(y,) ¢f(lim y,,) = f is discontinuous at all irrational points.
H—ron

H—ron

. ) 1
Consequently f is continuous only at x = >
Classification of discontinuities :

Let f be not continuous at p(e Df)‘ This discontinuity of f at p may be due to
different reasons which may be classified into two types / kinds.

Definition : (a) Let f be defined in both-sided neighbourhood of point
p(=Dy).

Let \‘l—i>12+ f(x) and xl_ig}_ 7(x) both exist finitely but are unequal, then x=p
is known as jump discontinuity of f.

Sf(p+o)- f(p-o) is known as height of the jump. If f has jump discontiuity
on the right at «, the height of jump is f(a+o0)— f{a) and similarly at b, it is

F(B)-f(b-o), if it is left discontinuous at b,
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Example : let:[0,1]] >R be defined by

[0 if x=0

l—x, if 04x<l
2

fx)=1 1%, if x:%

¥

if x=1

f(0+):%¢f(0), f[%-oj:o, f[%+0jz1 s0 f[%—()}:tf(%+0]

f (1—0):%:&1 50, O, % 1 are points of jump discontinuity of f.

If f(p-0),f(p+0) both exist and are equal but = f (p),

then p is removable discontinuity of f [i.e lim f(x)= f(p)]
X—>p

S5x+7, x<2

Example : f(x)=4 13, x=2
4x+9, x>2

f(2-0) =17 = f(2+0) but f(2)=13

x=72 is removable discontinuity. These two types of discontinuity are known
as discontinuity of first kind or ordinary discontinuity.
{b) (1) If / 15 defined in both sided nbd of p including p and at least one of

f(p-0) & f(p+0) fails to exist finitely though f is bounded in some deleted

neighbourhood of p, then p is discontinutiy of second kind with finite oscillation.

.1
Example : f(x)= My x=0

0 x=0

¥
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Neither lirg F(x) nor lim £(x) exists & but £ is bounded in #bd of 0.
x—0+ x—=0-

(ii) f is unbounded in every nbd p and lim f(x) or lim0 f(x) is
X p—

x—=>FP+0

+0 or —oo. Such a discontinuity is known as infinte discontinuity.

Example : f(x) =

by o= | =

, x>0
,x=0

2.3 Neighbourhood properties

Let f:D —R where D(cR) and p be an accumulation point of D as well

as an element of . Let f be continuous at p.
Then the following results hold :
(1) There exists a neighbourhood of p in which f is bounded.

(i) If f(p)=0, there exists a neighbourhood of p in which f(x)& f(p)
have the same sign.

(iii) If in every neighbourhood of p, f (x) assumes both positive & negative

values, then f{p)=0

The first two properties follow from the neighbourhood properties for the
existence of limit.

For (iii) if f(p)>0, by (ii) there exists nbd of p in which f{x)>0 for all
xe N(p,8) ND. But f(x) have both signs in every nbd of p & so f(p)#0.

By similar logic, f(p)«0. Hence f(p)=0.

[*
The converse of (iii) is not true. For example, £ ( x) S
0, x=0

xz0
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Continuity of some special types of functions
(i) Let f:D — R be monotone function (increasing or decreasing). Then at

every point ¢ of D, both f(c+0) & f{c-0) exist. So if ¢ be any point of

discontinuity, then that discontinuity is of first kind. In other words a monotone
function can not have any discontinuity of second kind (for proof, see Apendix).

(ii) Polynomial function ap”+ax" + . .+a, x+a,(q,cRVia,#0) is

are continuous for all xe K for which

continuous on R . Rational functions ( )
g(x

the functions can be defined.

sinx and cosx are continuous an B . tanx & secx are continuous for all

T . . .
x ¢(2??+1)5 and cotx, cosec x are continuous for all x #n»r (# is integer in both
cases)

(i) a", a>0, is continuous for all xeR. logx, x>0 is continuous for all

x>0,
(iv) For even positive integer », the function g x — %y is continuous for all
x€[0,50) and for an odd positive integer n, g is continuous for all x (-2, ).
(v) Limit of composite function :

Let f:(a,b) > R be continuous at ce(a,b). Suppose that g:7/ —>(a,b)

where 7 is an open interval and x, €7 If lim g(x) exists and is equal to ¢. then
X=X,

lim f(g(x))=f(c).

XX,

Proof : Continuity of £ at ¢ implies that for each pre-assigned € >0, there

exists & >0 such that ‘f(y)—f(c)ks whenever |y—¢|<3, (ye(a, b))‘.‘..‘(l)

As lim g(x)=c, so corresponding to above §, we can find n>0 such that
XX,

|g(x)—c|<6 for 0 <|x—x|<n ... ()
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By (1) and (2) for 0<|x—x.|<m, we have |f(g(x))- f(c)|<e, O<|r—x,|<n

Hence lim f(g(X))=f(C) follows.

XX,
Corollary : Let /, J be open intervals, g:/ — ./ be continuous at x; /. If

f:J —>R is continuous at g{x,)eJ then fog:/ —R is continuous at x,. In
other words, the composition of two continuous functions is continuous.
Note . Continuity of f at ¢ in (v) is needed.

Let f,g:R—>R be defined by
3, y=1
= =1 for all x.
/() {4,});&18(36)

Note that as y —>1, f(y) >4 & g{x)>lasx—0

For all x, f(g(x))=/(1)=3 & so it is not true that f(g(x))—>4 asx—0

Iustration :
(1) /
Al-x
To evaluate lim [ ! +xj /=)
I\ 2+x
1+x 1- \/;

Let f(x)= P g(x)=

2 . .
. 2 .. , _ l . _
lim f(x) 3 (f is continuous at x =1) & Lim 2(x) lim 7

1

Hence LI-IH [f(x)}g(x) =[§),2

lim g(x)In f{x)
(Note that lim [ £ (x) " =ex= =B - 4B i
K=

lim f(x)=A>0 and liIt}g(x):B)
*=

x—l
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(vi) Piecewise Continuous function :
Let f:[a,b]—>R be such that it is continuous in [, 5] except for a finite
number of points, at each of which f has jump discontinuity. Then f is said to be

piecewise continuous function in [a, b]

Illustration : Let f:[0,3] > R be defined by f(x)=[x]

0, 0sx<l1
I, 1€x<2
2, 25x<3
3, x=3

Then f(x)=

Note that f has jump discontinuity at 1, 2, 3 only & is continuous in (0, 1),
(1, 2) and (2, 3)

Example : Let f(x)=[x], xeR"

Then f is not continuous at any point of Z but is continuous on R*\7Z .

(i) Let CeZ.

Note that C—l—>C as n—>w. f[(?—ljo—l for all 7 . But
7] n

, 1 (A1
f(C)=C . So lim f(C—;)?ﬁf[llm [C—;J]ﬁf is not continuous at any

H—e
point of 7.
(i) Let CeR"\Z

We take 0<g<min {C—[C],[C]+1—C}

Let Iim x, =C. So corresponding to above ¢, dn, €Z such that

H—ron

|x, —¢|<e whenever n>n,
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Above choice of & implies [C]< x, <[C]+1 for all n2n,
Then f(x):[xn]:[C] tor all nzn,

Therefore f(x,)— f(C) as n— . Hence the result follows,

Examples of piecewise continuous functions
(1) f(x) =x- [x], Xe [0,4]

. X +s
(i) f(x) = lim o ¥ [-2.2]

2x+1 0=x<1

iy ) 5, x=1
Xi=
(111) Ir+21<x<?
7 x=2

il

2.4 Properties of functions continuous in a closed and
bounded interval [a, b]

Theorem (1) : Let f:[a,5] >R be continuous in the closed and bounded
interval [a, b] & f(a) f(#)<0. Then there exists at least one point ce(aq,?)

such that f(c)=0.

[To prove this, we require the following result, known as Nested interval
property :

If{[amb,,]}” be a sequence of closed and bounded intervals such that each is

contained in the preceeding. Then ﬂ[a,,, bﬁ]qﬁd)
1)

If more over lim (b,—a,)=0 thenif pef[a,, b,]. p is unique.]

=2
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Also lm a,=p=1lm b,

H—»0 H—

Proof : We assume that f{a)<0, f(b)>0

For the sake of convenience, let [a, 8] =[a,, 5] =1,
. a +h _ .
Let us bisect 7, at ¢ == If f{¢)=0 the result is proved

If f(c)=0, either f{c)>0 or f(q)<0
If f{c;)>0 we take [a,¢]asZ, so that f(aq)f{c)<0
& if f(e)<0, we take [¢, b]as I, I, =[a,, b,]

a> +b,

Let us bisect [a,,8,] at ¢, = If f(c,)=0 the result is proved.

Otherwise, we assume that sub-interval as [a;, b;]=1; for which f(a3)f(b;)<0
This process is continued indefinitely & we get a sequence {f,,,}n of closed &

bounded intervals [aﬁ, bﬂ] for which

(1) I,,ci, forall neN

=0

@ tim 1,|= i (5, ,)= im 225

Also f(a,) f(b,)<0for all neN

By Nested interval property, f;] I,={c} Also lim a4, =c=limd,
By construction, f(a,}<0and f(5,)>0 forall»

By continuity of f, ,,131_1,2, fla,)<0 & ,,131_1,2, 7(6,)=0

= /ima,)<0.& 7{lim, )20

= f(e)<0 & f(c)z0 = f(c)=0
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Note : This theorem is due to B. P J. N Bolzano (1781-1848)

Theorem (2) : Let f:[a,5] >R be continuous in [@,8] and f(a)= f(5).
If & be any real number such that f(a) <% < f(b)then there exists ¢ €(a,b) such
that f(c)=k.

Proof : Let ¢:[a,b] > R be defined by ¢(x)= f(x)—k

Continuity of fin [a, b]= continuity of ¢ in[a, 5]

b (a) 4 ()= {/(a)- K} {7 (8)-k} <0

Then by Bolzano’s theorem, there exists ce(a,b) such that

d)(c):Oi.ef(c):k

Note : (1) This property is known as Intermediate value (I.V.) property of f in
[a, 8]

(n) I. V. property does not hold in case of functions defined on a set.

Let S=[0,1JU[2,3] & f:S— R be defined by f(x)=x

3
£ is continuous on § but f does not attain the value 5 on S

(1)) Continunity of f in[a, b]:> validity of I V property by f on [a, 5]

but the converse is not true

Example : f:[0,1] >R be defined by f(x)= %, x=%
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f assumes every value between f(0)& f(1), f is not continuous in [0,1] & so

the validity of 1. V property by a function in a closed & bounded interval does not
characterise the continuity of the function. In this connection, we state the following
two important results :

(1) Let f: [a,5] >R obey the Intermediate value property in [a, 5] & let f

be monotonic in [a, »]. Then f is continuous on [a, 5],
(2) Let f be stictly monotonic function in the interval [a, 8]. If £ ([, B]), the
range set is an interval, then £ is continous on [a, 5].

Theorem (3) : Let f:[a,b]—>R be continuous and assume each value

between f(a)and f(b) just once. Then £ is strictly monotonic in [a, 5].

Proof : Let f(a)<f(b). We propose to show that f is strictly increasing
function.

Let a<x <b. As f(x) assumes each value between f(a) and f(5) just
once, so f(x)=7(a) or, f(x)=7s(b) is not possible. ... (1)

If f(x)<f(a)(<f(B)), then by L V. property f(x) must assume the value
f(a) for some xe(x,b). As a result f(x)= f(a), once at x=a & for some
xe(x,,b). This contradicts the hypothesis that f(x) assumes each value between
F(a) & f(b) just once. So f(x)<f(a) is not possible. .............. )

-

By similar logic, f(x;)> f(b) is not possible. ............. (3)

In that case, f(x) assumes the value f(b)at least twice — once at b &
another in (a, x;) by L. V. property.

By (1), 2) & (3), f(a) <f(x) <f(b)

This leads to the conclusion that if a<x <x, <b then

fla)<f(n)<f(x)</f(?)



50 NSOU « CC-MT-08

= f is strictly monotonic increasing in [a, 5]
If at the outset, we assume that f(a)> (%), then arguing in a similar way f
is strictly monotonic decreasing in [a, 5].

x2n+2 —COSX

Examples : f:[0,2] > R be defined by f(x)= lim ~

n—3o0 1+ x
Show that f(0) f(2) <Obut f(x) is never zero in (0,2). Explain why.
When 0 <x <1, 2 50 & when J<x<2, ¥ >

Here f{0)=-1. When O<x<1, f(x)=-cosx

5 COSX
- In
f(l):l[l—cosl]_ When 1<x<2, f(x)=lim —Ji:xz
? B T
x
(_1, x:o
—CosX, O<x <l
SO f(x):<

% (1-cosl), x=1

xz, l<x<2

So 7(0) f{2)=—4<0, but f(x) is never zero in (0, 2). The reason is that f

is not continuous in [0,2] & I. V. Property is not applicable.

(2) Let j’:[O, ﬂ >R be defined by

log (2+x), 0<x<l

f(x)= %(log?»—sinl), x=1

—-sinwx, léxi%
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Here £(0) f[%} =(log2)(-1) <0 but f(x} is never zero in (O, %) The

reason is (x) 1$ not continuous in [0, gj & so 1. V. property 1s not applicable

here.

(3) Let f: [O, 1]—>R be continuous function and assume only rational values

in the entire interval If f(x)=5atx= % , show that f(x)=5 everywhere.
a

If possible, let there exist c<[0,1], ¢ ¢% and f(c) =KeR.
J

If K#5, then by I V. property of continuous function, f(x) must assume
every value between K & 5. Between K & 5, there are rational as well as irrational

points also. But 7(x) assumes rational values only. So f{x) =5 throughout [0,1].

(4) Let f:[0,1]] >R be continuous function and f(0)= #(1). Show that

1
there exists ¥ €[0,1], such that |x —,V|=E and f{x)=f(»).
1
Let wus consider the function 83{(1 5]—>R defined by
1
g)=7(x1]- 1)

1
Continuity of fin [0,1]= continuity of g in {0, E]

s0s{3)-{s(3)-1 ) [r0r-o(3]) o

. . . . 1
By Bolzano’s theorem on continuous function, there exists ¢ ¢ (O, EJ such that
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g(c):O:f[c+%J=f(c) we get x, y<[0,1], |x—y|:% for which

f(x)=r10).

(5) (Fixed point property) Let f :[a, 5] — [, ] be continuous function. Show
that for some &e[a, 5], £(2)=¢ holds

If f(a)=aor f(b)=5, the result is established.

We take f(a)>a, f(b)<b. (as f:[a,b]—[a,b])

Let g:[a,5] >R be defined by g(x)=7(x)-x

Continuity of £ in [a, 5] = continuity of g in [a, 5].

gla)g(®) = { f(a) —a} { f(b) —b} <0. So by Bolzano’s theorem, there exists

&< (a, b) such that g(€)=0 or f(£)=E.
Notes : (i) The condition of continuity of f can not be dropped

(1) The result may fail if the interval be not closed and bounded :

l+x

(@ f:[0,)— R be defined by f(x):T

(b) 7 [l)— R be defined by f(¥)= x+%

(i) f must be defined on some interval (C IE{)
f:S—R be defined by f(x)=-x where xe§(=[-2,-1] U[L2])

Also f:R >R be defined by f{(x)=x"+1
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Exercise :

1. Show that x.2" =1 has a solution in [0,1].

2. Let f:[a,b]—R be continuous function & the equation f(x)=0 have
finite number of roots in [a, b] & arranging them in the ascending order, these are

A< <Xy <. <Xp | <X, <X, <D

Prove that in each of (x,_;,x,) f(x) must have the same sign.

3. If f:[a,5] >R be a continuous function & f(x) be always a rational

number, then f(x) is a constant function.

x?—2x, when xis rational}

: . A} =
4. Examine for the continuity of J/ ./ (¥) { 3x—6, when ¥ is irational

5. Does the equation sin x —x+1=0 have a root ?

3
X .
6. Does the equation f (x)=7— sin ™x + 3 take on the value 2% within the

interval [-2,2]?
7. Show that there exists xe (O, g] such that x=cosx

Theroem (4) : Let f:[a,5] > R be continuous in [, #]. Then fis bounded
in [a, 5] & attains its bounds in [, 8].
Proof : If possible let f be not bounded in [a, b]. So corresponding to ne N,

there exists x, €[a, 4] such that |f (xn)lz n.

All such x,’s are in [a, b]. So we get a sequence {xn}n in [a,b]. Hence
{x,}, is bounded in [a,5].

By Bolzano-Weierstrass theorem on subsequence, there exists a convergent sub
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sequence {xr }n (say) of {x,} , which converges to /(e R) This /e[a,b] as

"

[a,5] is closed. Due to continuity of ./, {f (xrﬂ )}n should converge to f(x).

Every convergent sequence is necessarily bounded. So {f (X ey )}n is bounded. But

by construction, |f (X,‘n) 2%, & as {!’,,}n is strictly increasing sequence of natural

=

numbers, so 7, =7 . Conequenctly, ’f (xrn)

This contradicts {f (x,,” )}n is bounded.

This £ is bounded on [a, ]

Let M =sup f, m=inf f
[, 5] [o.2]

If possible, let there be no point x in [4,5] at which f(x)=M . So
F(x)<Min[a,b].

We construct ¢:[a,5] > R defined by ¢(x) for all xe|[a,b].

1
T M-—f (x)
Continuity of f in [a, 5] = Continuity of ¢in[a,b]. So ¢ is bounded in [a, 5].
Let (>0 be any number, as large as we please.

As M =sup £, there exists at least one point £ €[a, 5] such that
[d_. b]

1
S M=
F(e)>M-
1
=»>————>G = $(&)>G. This contradicts the fact that ¢is bounded in
M-f£(&) ( )

[a.]

So there exists a point in [, 5] at which f(x)=M .
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Similarly, it can be shown that there exists a point in [a, b]at which f{x)=m
holds.

Corollaries : (i) If f:[a,5] >R be a non-constant continuous function, then

f{(x) assumes every value between its infimum & supremum.

By above theorem, there are points & ne[a, 5] such that f(&)=Af,
f(n) =m. By 1. V. property of continuous function, applied to f in [i, ‘r]] (or

[n, €]) the result follows.

(i) Let 7 (<= R) be a closed and bounded interval & let f:/ —R be non

constant continuous function in 1.

Then the set f(I)={7(x):xeI} is a closed & bounded interval.

If M =sup f, m:[inglf, then m< f(x)<M forall xe/
[a.5] @

:)f(f) ;[m,M] .1

Let k£ be any element of [m, Af]. Then by Corollany 1, there exists c</ such
that f(c)=ke f(I)

So [m M]c £(I) ... (2)

By (1) and (2), f(7)=[m,M]

Note : The result fails if the condition of continuity be dropped.
I

f:I=[-1,1] >R be defined by f(x)=1 x°
0, x=0

xz0

f () is not an interval.
2. The continuous image of an open interval may not be open.

1
x 41

Let f:(-11)— R be defined by f(x)=
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Here f(I)=(4,1] which is not open interval

3. The continuous image of an unbounded closed interval may not be closed.

1
Let f:1=[0,0)—> R be defined by f(x)=— 1
X+

Here f(7)=(0,1] which is not closed.
Example (1) : Let f:[@,5] >R be continuous in [a, 5]

Let x; x,,.....x, €[a, b]. Show that there exists a point & in [a, 5] such that
1 H
1&=2%10:

As f is continuous in [a, 5], there are points o, f<[a, b] such that

Fla)< f(x)< f(B) for all xe[a,b]

:rgf(a)ng(xf)S”f (8)
= f(a)< %gf(xf) <f(B)

By LV. property of continuous functions, there exists § < [a, b] such that

7E) =13 1 (x)

H e
(2) Let f,g:R—> R are continuous on R . Show that
A={xeR|f(x)>g(x)]. B={xeR|f(x)<g®)}. C={xeR|f(x) = g(x)}
are open sets in R whereas D ={xe R | flx)= g(x)} is a closed set in R.

Let ¢(x)=f(x)-g(x), xeR. As £, g are continuous, so ¢(x) is continuous
in R

@) A={xeR[p(x)>0}
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Case I: If ¢(x)<0inR. Then 4=¢ & So 4 is open set in R.

Case Il : If ¢{(x)>0 in R. So A=R & R being open set, 4 is open set
in .

CaseIll : Let AcR.

Let pe A, So ¢(p)>0 & by neighbourhood property of continuous function,
there exists >0 such that xeN{p,8)= ¢(x)>0

Thus N(p,8)c 4 & so p is interior point of 4. This is true for all pe 4.
Consequently A4 is open set in R .

Arguing in a similar way, B is open set in R .

Set C=AUB so C is unmon of two open sets in B & so C is open set in R .
D is the complement of open set C & hence D is closed.

(3) Let / (c R) be a given open interval. Let f:7/ — R be continuous on /.
Let o be an arbitrary real constant.

Then I[f<oa]z{xe!:f(x)<a} and J[f>a]={x ef:f(x)>oc} are
open sets.

If f(x)=afor all x, 7 and J are void sets & so are open sets in R

Next let 7 [f(x) <0t:| ¢

1
So there exists pel ie f(p)<o. Let 0<8<E|:C1—f(}?)1 .

Continuity of f at p = corresponding to above chosen g, there exists >0
such that | (x)—f (p)|< & whenever xeN (p,8)NI..(1)

By hypothesis, [ is open set & p is interior point of /. By definition of interior
point, there exists r,0<r <&, such that N(p,r)ci..(2)

By (1) & (2), f(x)<f(p)+8<f(p)%(a—f(p))
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= f(x)<o where xe N (p,r)=> N(p,r)cI|[f<a]

= I[f <] is an open set in R.
Following similar argument, J[f > ¢] is also open set in R .

(iv) Let f, g:[0,1]—[0,0) be continuous functions satisfying

sup f(x) =sup g(x)
[0.1] [0.1]

Show that there exists ¢<[0,1] such that f(c)=g(c)

Continuity of £, in [0, 1] = boundedness & their attainment of bounds in [0,1].

Let M =sup f(x)=sup g (x)
[0.1] [o.1]

If both f & g attain A at the same point, the result is established.
Otherwise : Let f{¢)=M and g{(n)=M for some & ne[0,1],

So g{€)<M, f(m)<M.

We construct #:[0,1] >R by A(x)= f(x)—g(x). Then / is continuous in
[0, 1] & by above A(£)= f(£)-g(&)=M —g(£)>0 and

h(n)=f(n)-g(n)=7(n)-M <0. So 1(&)h(n)<0

= By Bolzano’s theorem, there exists ¢ (&, n) = (0,1) such that A{c)=0

-&(
(

or in other words, f(c)=g(c).
Continuity of Inverse function :

Theorem : Let f:[a,b]—> R be strictly monotonic and continuous on the
closed and bounded interval [a,8]. Then there exists an inverse function
g fla ] >R such that (i) g is strictly monotonic in f[a,b] and (ii) g is

continuous in f [a, 5]
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Proof : Let f be strictly increasing in [a, 5] ... (1)
Continuity of £ in [a, )] = boundedness of fin [a, 5] & attainment of bounds

in [a, b]. So sup f =7 (&), inf f=f(a).
[.5] [a. 2]

Therefore, here f([a, 5])=[f (a), £ (B)]... (1)

As f is strictly increasing, so for any distinct pair of points x;, x, €[a, 8],
F(n)# 7 ()<= x #x, Sofis injective. ... (2)

Consequently by (1) & (2) f is bijective. So /' =& exists where
g: f([a,b]) > [a.b]. where f(x)=y=x=g(y),xe[a,b].ye f[a,b]

Let y, ;€ f[(a,6)]. So there are x, x, €[a, 5] such that

n=r(x),y,=1(x)

f being strictly increasing in [a, 5], y; <y, = x<x,
As a result, y; <y, > g(1)<g(y)=>g is strictly increasing in f ([a. 8]).

Let y, be any point between f(a) and f(b) & x, be the corresponding
value of x.

Let £€>0 be arbitrary number such that x,—¢, x,+¢ are in [a,b]. Let
g(yo-m)=xo—¢ and g(y, +m, )X, +& such that 1;,m, >0 exist by above.
Let n be such that 0<m<min{n;,n,}. Then

|x—x0|<8 whenever |y—y0|<n,1’| depends on g.

So g(y) is continuous at y,. and this is true for all ¥, € [f (a), f(b)]
Hence the result follows :

Note (i) Continuity of Inverse function is preserved only when the domain is
closed and bounded.

Let A =|:0_,1)U[2,3] and f:A—R be defined by
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x,xe[O,l)
x—l,xe[Z, 3]

f(x)={

f_l( ) x,x€[0,1)
xX)= 1 i o ) _
x+1,xe[,2] = £7! is discontinuous at x = 1.

Theorem : If f:[a, 5] >R be continuous, injective function, then f is strictly
monotone function.

If possible, let f be not strictly monotone function in [a,5] though f is
continuous & injective in [a,b]. So we say that there are three points
P, q.7 €[a,b] where p<gq<r nonetheless f(q) does not lie between f(p) and
f (). Consequently, either f (r) lies between f(p) and f(g) or f(p) lies
between f(q) and f(r). For definiteness, let f{p) be between f(g) and
f(r).

By hypothesis, f is continuous in [¢, 7] =[a,5]. By I. V. property, there exists
se(q,r) such that f{(s)=s(p).

So p<s but f(p)=f(s). This contradicts the injectivity of f

Similarly if we assume that f(7) lies between f(p) and f(g), we would
arrive at same type of contradiction. So £ is strictly monotone.
Corollary : A continuous function f :[a, b] — R is injective if and only if f is

strictly monotone in [a, 5].

Example : Assume that f:R >R satisfies f(f(x))=/7(x)=-x for all

xelR.
Then f can not be continuous.
First we propose to show that f is injective.

fa)=rf(n)= o)== -=-n=2=x,
If f be continuous then it would be either strictly increasing or strictly
decreasing. In both cases, fZwould be increasing.
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For if p<gq, then f{(p )< f{(q) (in case fis increasing) & 7 (p)>f(g) (in
case f is decreasing). In the first case, f (f ( p)) <f ( f (q)) & in the second case

F(£(p))<f(f(q)). Soin any case, f*(p)<f*(q)
=>-p<—¢q absurd as p<gq
So f can not be continuous.
Exercise :
2x—1if xe(0,1) }

1. Let f:[0,1] >R be defined by f(x)={0 0 or

E

Choose the correct answer :
{a) f 1s unbounded function (b} f 1s bounded function and attains its bounds

there in {(c) f i1s bounded function but does not attain its bounds.
2°+1, for-1<x<0
x)=45 2% forx=0

2% 1, for 0<x<1

2. Let f(

Choose the correct answer :

(a) f is bounded in [-1,1]
(b) £ is unbounded in [-1,1]
(c) f is continuous in [-1,1]

(d) £ has jump discontinuity in [-1,1]

2.5 Uniform Continuity

Recall our €—0 definition of continuity of function. The following example
will illustrate that the & mentioned in the definition depends not only on g, but on
the point also.

I (x) =x? is continuous on R . Let us consider the continuity of x*atx=0.

Let 8:%. Then |f(x)—f(0)‘<%:>|x‘<; So we get 6:% such that
2
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1$ permissible

Wl | —

1
|f(x)—f(0)| <5 wherever |x—0|<&. Our point is that § =

here.
Let us examine whether this § serves for all points of R .

f{(x) is continuous at x =1. If the above § serves for x=1 also, we would
1 1
have |f(x)—f(1)| Ty whenever |x—1|<6[= EJ

1
Note that x =1.3 satisfy |[¥—1|<=. But then
2

1
7()-s ()= 09¢5( 3]
So the §, obtained in case of x=0, does not serve the purpose for x =1

Let us consider another example f(x) =% in (0, 1)

If possible, let there exist 6 >0 such that ‘f(x)—f(y)|<1 wherever

|x-¥|< 8, x,ye(0,1)

o 3
Let ¥=115"Y = 3(150) (bothe(0.1)).

5

5.
2(1+3)

Note that for these, |[x— y|=

1+8
But |f(x)—f(}’)|=T>1
So the above & is not applicable here.

QOur observation is that the §, appeared in the £—& definition for continuity,
depends both on g and the point itself. At this stage, our purpose is to investigate

whether there exists § > (¢ which depends only on ¢ so that the & can serve for all

points of D,
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Let A= {8(p, g):pe Df} where each 8> 0. This set A is non-void bounded

below subset of R and has inf &,(say). Then §,=0.

If §,>0, then for any peDy, |x—p|<60:>|f(x)—f(p)|<8. So this §,

serves for all points of D, As the 8, serves for all points of D, then the
continuity is known as uniform continuity & f is said to be uniformly continuous

on D,

{Note . Uniform Continuity is of global character)

Definition : A function f:D —R(D <R) is said to be uniformly continuous
on D, if given g >0, there exists &>0. depending on g only, such that for any
pair of points x, y of D satistying |x—y| <&, we have |f(x)—f(y)| <€

Example I : if f:D—R is a Lipschitz function, then f is uniformly
continuous on ).

As f:D— R 1s a Lipschitz function, there exists a constant A >0 such that
‘j’(x)—f (u)‘ SAlx—u| for all x,ueD

£

Let £ >0 be any number. Taking 5=x, we get

£ (x)-f(u)|<e for all x,yeD satisfying |x—u|<
— f is uniformly continuous on .

Uniform Continuity in closed and bounded interval [a, b].

Theorem : Let f:[a, 5] >R be continuous in [a, b]. Let £>0 be any

number. Then the interval [a, b] can be divided into finite number of sub-intervals

in such a way that

|#(x;)—f(x)| <& whenever x; & x, are any two points in the same sub-

interval.
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Proof : If possible, let the theorem be false in [a, b]=[a,, 5 ].

a,+b
2

We bisect [a,, 5] of ¢ = . Then the theorem is false in at least one of

[a1,¢] and [¢, B]. We designate that sub-interval as [a,, b,] in which the theorem
is false. Agaln we bisect [a2, b2] at c,= % & let [0'3_, b3] be the sub-interval in
which the theorem is false.

Proceeding in this way, we obtain a sequence of nested intervals {[aﬁ, b, ]}n
such that (i) each is contained in the preceeding (ii) Iim (5, -a,)=lim ——=0
=y

Also the theorem is false in each [a,. b,].

By Nested interval theorem, Elée[aﬂ b":l for all »,& is unique and
lima, =&=1limb,
F—>o0 H—r0

L a<&<b
By hypothesis, fis continuous at &. So given g, there exists § >0 such
£
that |f(x)—f(§)|<5 wherever |x—§| <.
As lim(b,—a,)=0 and £<]a,, b,] for all n, so for sufficiently large n,
H—r0

say for n2m,(eN), [a,,, b,,] lies wholly in [£-8,£+8]

Let X X, be any two distinct points in [a,r‘ b,r] for n=n,
o [F(a)=7 (@) <5, [ le)=r &)< =]f(e)-r(x) <

So the theorem is true in [a,, o’b"o J Thus we arrive at a contradiction.
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IIl. Let E=a

Arguing as before and noting that for sufficiently large values of n.
[aﬂ, bﬂ]= [a, bﬂ]g[a,a+6], we will arrive at a similar type of contradiction.

Il Let =5

Here for sufficiently large values of #,

[a,. b,]=[a,.b] <[b-8.b] & arguing as before, we will arrive at a similar
type of contradiction.
Hence the theorem follows.

Corollaries (I) Let & be the least of the lengths of the sub-intervals mentioned
above.

Let us consider two points x;, x, of [, 5] such that |x; —x,|<&. Then two
cases may arise :

(i) x; and x, belong to the same sub interval
(ii)) x, and x, belong to two consecutive sub-intervals.
(i) In this case, by the theorem, |f(x2)—f(x1 )|< £ holds.

(ii) Let ¢ be the point which separates the two sub intervals.

Then x|,c are in one sub interval & ¢, x, are in another same subinterval.
So by the theorem, |f (x)-71 (c)|< % and |f (c)-f (x2)|< %

As aresult, | (x,)— f(x)|s|f (x)—f{e)|+|F (x)—F(c)| <& holds.

So given € >0, there exists § >0 such that if

|, - x| <5, then |7 (x1)— f ()| <& holds.

(II) Let m_, denote any sub-interval of [a, b] such that the length of n,is less
then 8, where & >0 is as above. If x, X, be any two points of n_then

|x1—x2|<8:|f(xl)—f(x2)|<e
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let M, =supf, m,.=inf f As fis continuous in M, these bounds are attained

n, N,

in M,. Let x" and x" be the two points in N, where A = f(x'), m, = f(x")

I3

Then by above, M. —m, <¢€.

So if £ is continuous in [a,5] & & be any positive number, there exists §> 0

such that the oscillation of £ in every sub-interval of length less than 3, is less than
£.

Theorem : If f is continuous in the closed and bounded interval [a, b]_, then f
is uniformly continuous in [a, 8],

Proof : If possible, let f be not uniformly continuous in [a,5]. Hence there
exists €, >0 for which there is no 6 > 0 with the property that

|f(x2)—f(xl)| <g, for all pair of points x,, x, of [a, 5] satistying x—x,| <8.

In other words, for all each positive integer n, there is a pair x),, x) of [, 8] such

1
that [x), —x)] <~ nonetheless |f(x;)—f(x;) >g,

As x,c[a,b] for all n, {x,-x,} is abounded sequence in R . By Bolzano-
Weierstrass theorem on subsequence, there is a subsequence {xﬁ } of {x,’,}n which
L N
converge to x, and x,<[a, b] as [a, 8] is closed.
. ’ ” 1 "
Since |~ X <;, we see that x; —x, as #—>©
H

(Hx};n}is subsequence of {x;}”)

Due to continuity of £, f (x;’(n)—> F(x0).f (x,".;)a Flx).

So coresponding to above g, there are natural numbers m,, m, such that
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|f(xfc” )—f(xo) <% for all n>m & ‘f(x"kn)—f(xo)

<% for n=m,.

£l )-rlxi)

Hence for all n2m=max {m,, m,}, both hold & we get <&

for all n=m,
This last inequality is in contradiction to (1). Hence f is uniformly continuous

in [a, b]
Uniform Continuity in open interval (a, b)
Theorem : Let  be continuous in («,?), then £ is uniformly continuous in

(a.b) if and only if lim f(x) and lim f(x) both exist finitely.
Proof : Let f be continuous in the bounded open interval (@, #) and

}1}2 S(x)and JLT_ J(x) both exist finitely.
We construct g :[a,b] > R as follows :
g(x):f(x) for all xe(a, b)
g(a)= lim f(x) and g(b)= lim f(x)

Then lim g(x)=lim f(x)=g(a) and rl_i)lglog(x) = JLHI;!_f(x) =2(b)

A—rat
Along with this, considering the continuity of £ in (a,b), we say that g is
continuous in [a,5] & so g is uniformly continuous in [a,5] & (@,b). But g and f

are identical in (@, ?). So fis uniformly continuous in (a,5).
Converse : Let f be uniformly continuous in open interval (a, ).
We propose to show that both lim f(x) & lir? f(x) exist finitely.
X—=ra+ y—=h-

If possible, suppose that lim f(x) does not exist. Then there is a sequence
xX=ra+
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{x.}, in (a,b) with x, —>a such that the sequence { f (xn)}n does not converge

& hence is not a cauchy sequence in R . Then there exists some &,(>0) with the

property that there is no natural number #, for which

ij 2 :>|f(xf)—f(3pf)|<80,
Consequently we can find arbitrary large i jeN for which

|f(x,.)—f (xj)|280. Now since the sequence {x,,} is a cauchy sequence in [k,

H

we have lim |x,-—xj|:0. Clearly for this g;,, we can find a pair of points
i, j—w

x;, x; € (a,b) which are arbitrarily close and for which | flx)- f(xj)| >g,. This
implies that £ is not uniformly continuous in (a,b).

A similar argument can be in the case when lim f(x) exists but lim f(x)
x—at+ x—bh—

fails to exist.

Iustration : Let f(x) = 1 in (o) 1)_ lim f (x) does not exist fimtely & so f
X

=0+

is not uniformly continuous in (0,1).
An imporant non-uniform continuous criteria

A function f: D —R(DcR) is not uniformly continuous on D if and only if

there exist sequences {xn}n and {l',,}n in D such that

+ 0

Q) |x,—1,| =0 i) |£(x,)-5 (1)

Examples : (a) 1 is not uniformly continuous in (0,1)
x

1 |
choose the sequences X, = " and 7, = 5, "€ N
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(b) x* is not uniformly continuous on K

1
choose the sequences x,=#n, f,=n+—, neN
n

N B . . .
{c) sin— is not uniformly continuous in (O, oo)
X

1 2
choose the sequences x, = L, =

n

2nm’ (4n+1)n’n

eN
(d) sin x* is not uniformly continuous on R .

T frc
choose the sequences X, = E(n+1) &t, = EH ,nelN

(e) '+ is not uniformly continuous on (0,1).

Choose x, = 1 7 neN-{1}

Inp’ " - ln(n+1)’

(f) xsinx is not uniformly continuous on (0,)

3 :2mt+l nelN

» YR H

H

choose x, =2nm

Examples :

(1) If f,g:D—>R(DcR) be both uniformly continuous on D & D be
bounded, then fg is uniformly continuous on D.

To solve this we will use the following result (which i1s being stated here
without proof).

If f:D— IE{(D c R) be uniformly continuous on a bounded set D), then f is
bounded on [

/. & are bounded on D. So there exists AeR* such that |7 (x)[<A, |g(x)| <A
for all xeD.

Let x, ye D then
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1F (x)g(x)- 7 (»e) <|f (e (x)-gW+eWf (x)-F ) . (D

Let £ >0 any number. As f g are uniformly continuous on D, corresponding to
above g, there exists §; > 0,8, > 0, both depend on ¢ only, such that for any pair

of points x, y of D satistying |x— y|<8,, we have |f(x)- f(»)|< % and

[x=¥] <8, :lg(X)—g(y)|<% ......... 2)

Let 5=min{§,,8,}. Recalling (1) & (2)

|f(x)g(x)—f(y)g(y)|<l‘%+l‘% for any pair of points x, y of D
satisfying [x—y|<38

= fg is uniformly continuous on D.

Note the result fails if D be not bounded. This is evident from the example x*

on R.
(2) Every uniformly continuous function maps a cauchy sequence onto a
cauchy sequence.

Let {x,,,},,I be a cauchy sequence in [ .

Let ¢ >0 be any number. Since f is uniformly continuous on D, corresponding
to above g, there exists § >0 (§ depends only on g) such that for any pair of

points x, y of D that satisfy |x—y|<8, we have |f(x)—/(y)[<e...(1)

Since {JC,,I}i,I is a cauchy sequence in R, corresponding to above 6, there

exists me N such that |, ,—x,|< O forall n=m peN.... (2)

By (1) and (2), |f(xn+P)—f(x,,)|<8 for all n>m, peN

= { f (x,,)n} is a cauchy sequence.

Note : The result fails if £ be only continuous on D.
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Consider f(x)= Lin (0,1) and x, = l(ne N).
x n

Here f(x,)=n and { f (xﬁ)}n is not cauchy sequence.

2.6 Summary

In this unit, we have defined the terms continuity and discontinuity and given
various examples. We have studied various types of discontinuities and their properties.
We have explained the most important properties of functions continuous in a closed
and bounded interval [a, 5], such as, Intermediate value property, Fixed point property.
We have also shown the relation between continuity and monotonicity. We have further
study the maximum-minimum property. We have introduced the notion of uniform
continuity and shown that in a closed and bounded interval [a, 5] this concept is same
with the concept of continmty. We also studied the uniform continuity on an open
interval (&, b), and give an important non-uniform continuity criteria. We have also
shown that every uniformly continuous function maps cauchy sequence into a cauchy
sequence.

2.7 Exercise

1. Prove or disprove : If f:S—> R, g:T>R(S,7cR) are uniformly

continuous and f(S) <7, then the composite function go f:S— R is uniformly
continuous on §.

2. Show that ¢” cos— is not uniformly continuous on (0,1)
x

{Hints : You can consider the sequences { I } & 1 )
n),  [(2n+l)m)

3. Let f(x)=+/x,xe[0,2]
Choose the correct answer(s) :
(i) f is Lipschitz function in [0, 2]

(i) £ is not Lipschitz function in [0, 2]
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(iii) £ is uniformly continuous in [0, 2]
(iv) £ is not uniformly continuous in [0, 2]

. .2 . . .
4. Correct or justify : xsin” x is uniformly continuous on R .

5 Let f:[0,1]] >R be defined by f(x)= xcoszi, x#0
x
0,x=0

Examine whether f is uniformly continuous on [0,1].

6. Let f:[a, b] —> R be continuous on [a, 5] and let the equation f(x)=0
have finite number of roots in [a,5]. Arrange them in the ascending order.

a<x <X <.<X, <X,<..<Xx, <b

Prove that in each of the intervals (ay,x,),(x, x;), (x,_1, x,)(x,, %) the

function ffx) retains the same sign.
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3.0 Objectives

This unit gives

e The concept of differentiation of a function
e Algebric operation of differentiable function
e Rolle’s theorem and some application

e Expansion of a differentiable function in series form

3.1 Introduction

The problem of finding tangent lines and the seemingly unrelated problem of
finding maximum or minimum values were first seen to have a connection by Fermat
in the 1630s. And the relation between tangent lines to curve and the velocity of a
moving particle was discovered in the late 1660s by Isaac Newton. Newton’s theory
of ‘fluxions’ which was based on an intuitive idea of limit. But the vital observation,
made by Newton and, independently, by Gottfried Leibniz in the 1680s, was that areas
under curves could be calculated by reversing the differentiation process. In this chapter

we will develop the theory of differentiation.
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3.2 Differentiation of Functions

The derivative : Let /D — R(D c IE{) be a given function, ¢ be a point of

D as well as an accumulation point of ). So the function xa% is
defined on D-{c}.
If Ll_)mc % exists finitely and be = L{c R) then we say that fis derivable
at ¢, f'(c) exists and = L
If f:[a,5]—>R then f'(a) isin fact Rf r(a)lei&% provided the
f(x)-f(b)

limit exists and f'(5) is in fact Lf'(b)= lim

rovided it exists.
x—b— x—b » P

If ¢ be interior point of [a, b], then f'(c)exists provided

lim M:Lf'(c) exists, lim M

1'(c)= R (c)(e R)
(x)-s(e)

Notes : If lim J

X—e X—-c

=Rf'(c) exists and

does not exist finitely, we say that f’ does not exist
at c.

2. f:D—>R is said to be differentiable on a set Dy = D, if the restriction of
Jto Dyis differentiable at every point of D,

Result : 1. Let f: D —R be differentiable at pe D()1D’, then there exists

$>0 and a constant A >0 such that

|7 (x)=f(p)| <M |x—p| for every xe DAN(p,8)
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Proof : By hypothesis lim M exists & = f r(p)
X=p x—p

Let ¢~ 0 be given, corresponding to this g, there exists §>0 such that

f(’?r:i(}’)_fr(p)

f() =/ (p)
x—p
Hence |/ (x)—f(p)|<M|x—p|. xe N(p,8)nD

Note . Instead of ¢ in above, you can choose any fixed positive number

<g& whenever xe N'(p,8)~D

= <8+|f ’(P)| =M (say), M is a positive constant,

€
Corollary : If we take 0 =27 then from above result

£ g
- M <&
[F(x)-f(p)|< 77 Wherever |x p|<M

= fis continuous at p
So derivability at a point — continuity at that point
Note : converse is not true,

xsinl, x=0

fl)=4""x
0,x=0

R |
As 111% sm; does not exist so f'does not exist at x =0.
X—

But f is continuous at x = 0.
Examples :

I. Let f:(a,b) >R be differentiable at xe(a,b). Let {a,} &{B,} be

sequences such that a<a, <x<f, <b, o, > x,B, >x

Then show that lgn f(BI;):‘;(OL") = f'(x)
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Let %, ==X  Then 0<A, <I

Bn Gy,

Bn B o, ' f Bn _f X '
f( ) f( )_f(x):xn{ ( ) ()_f(x)}

Bn —Oy, Bn —X

+(1—?L ) f(arr)_f(x)_f;(x)
H an —x
By hypothesis, '(x) exists & so the expressions within the brackets both tend
to zero as n—>, { ,,}n &1 }n are both bounded.
, B S o,

Hence lim S (B)- OL( ) exists & is equal to f'(x).

ﬂ H

Note : If x <a,, <P, the result may fail.

1
Let B, = ;(n eN) and let {Ct,,,}“ be a sequence such that f3,,, <o, <P,

Let f:[-1,1]] >R be a piecewise linear function such that

f[l)=iz»f(aﬂ)=0,f(x)=0 for -1 <x <0
n

R

We choose o, nearer to J,. Let an=l[l+ 1 ]

2n n+l
10
Then lim S (Bn)= f () = lim n’ = 2(n+1) >
e Bn -G, Ot l_l(l—i_Lj i
n 2\n n+l

But f ’(0):0 & so the conclusion mentioned in the problem, fails.
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2. If the function xf(x) has a derivative at a given point x, =0 and if f(x)
is continuous there, show that f(x) has a derivative there.

xf(x)—xof(x())_f(x)=x0{w} (1)

X_XO x_xo ------

By hypothesis, xf(x) has a derivative at x, #0 and f(x) is continuous at x;.
d
So as x > x,, LHS. of (1) ﬁg(xf(x))lﬁxo —f(x)

Hence lim —f ()= /(%)

exists and is equal to
Xy X—Xx,

' —f(xo)}

B xusiniﬁ,x;&o
3. f:(-L1)> R be defined by fx)= xO .
,x=

Show that (i) if a =1, B> 0, f* does not exist at x = O but if o >1, >0, " exists
atx =0,
(i) if 0<P<a-1, f is continuous at 0
(iii) if 0<o—1<f, f' is discontinuous at 0.
1 .

—f(x)— /(0) =x"" sin

x-0 x_ﬂ’xio

Q) if a=1p>0,x*" smL =sin—-. As lim sin —(B>0) does not exist.
xﬁ xB =0 xB

so in this case, f' does not exist at x = 0.
(i) Let a>1LB>0

Let € >0 be any number.
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x)— (0 - Y-
M—O = " sin L <|x* <& wherever [x-0|<8=¢ (o=D)
x=-0 xP
. f(x)-f(0) . . , :
So ll_% — exists ie. f (0) exists.
So for 0<B<a—1 f'(0)=0
if x=0, f'(x)= o™ SinL —Bx* P cos L
' - xP xP
As a>1,B>0, lim x*! siniB =0
¥=0 X
. o-1-p 1
and as o.—1—f3 >0, lim x' cos—ﬁ=0
x—=0 X
Hence lim f'(x)= f'(0)& f* is continuous at x = 0.
x—0
(iii) Let O0<ot—1<p
Then a—-1-f<0, lim xe 1P ccosiB does not exist
x—0 X
Hence £’ is discontinuous at 0. (Nature of this discontinuity is that of second
kind)

4. Consider a polynomial f(x) with real coefficients having the property that

fg(x)]=2[f(x)] for every polynomial f(x) with real coefficients.

Show that f(x) = x
Let us take g(x)=x+hheR
So f(x+h)=f(x)+h as f|g(x)]|=g[f(x)] by hypothesis.

= lim f(x+h)—f(x)

=0 A

Let g(x)=0, then f[g(0)]=g[f(0)]|=0=0+1= f(x)=x

=1= f(x)=x+A where X is real constant.
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5.1f f:R—> R be differentiable at ce R, show that

r-tm ol (et rte) ]|

Hence show that if f is the derivative of a function g, then £ is the limit of a
sequence of continuous functions.

fle+h)-7(c)
) ey

As f'(¢) exists, so lim
f( ) ) f1—0

1 1 f[H_)_f ‘
lim —=0, so replacing h by = lim nl = f’(c)

T ] n oo Y

So the first part follows.
By hypothesis, g is derivable & so g is continuous function.

1 .
We define g, (x)= g[x+—] & so these g ’s are continuous.
n

Also n[g"— g] are continuous,

By hypothesis, f is derivative of g, it follows that

f=1lim n{gn —g} = lim n{g[x+l]—g(x)}
F—c H—ron H

So fis the imit of a sequence of continuous functions.
Sign of the derivative at a point,

Theorem : Let f:/ — R and let ¢ be an interior point of interval /.
Let f'(c) exist and f'(c)=0

(a) If f '(c)> 0, there exists a neighbourhood of ‘¢’ in which f is increasing

function. In other words, there exists &~ (0 such that

f(x)> f(c) for all xe(c,c+8)~I and

Fx)< fle) forall x in (¢=8,c)nT
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(b) If f '(c)<0_, there exists a neighbourhood of ‘¢’ in which f is decreasing
function. In other words, there exists & >0 such that

F(x)< f(e) for all xe(c,c+8)1

F(x)> f(c) forall xe(c—8,¢)n1

Proof : Let O <¢ <@ be any number.

Corresponding to such g, there exists & >0 such that

I | )
) 2

whenever 0<|x—c|<8(xel)
x—c

Case I: Let f'(¢)>0. Then f';c’) - f(x)=f(c) <3f'(c)

xX—c 2

whenever c-8<x<c, c<x<c+d

If c-d<x<c, f(X)—f(C)é%éOﬁf(X)éf(C) in c-8<x<c

If c<x<c+6,f(x)—f(c)>%> 0= f(x)> f(c) in c<x<c+d
Consequently, f is increasing in the neighbourhood of ¢.

f'{e)
2

Case I : Let f'(c)<0. Then e=— , 50 we have

,0<|x—c|<8.

37(e) _1(0-1() _f1(e)
- 2

2 x-c
If c—6<x<c,f(x)—f(c)>%>0

= f(x)> f{c)in c-d<x<c
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If c<x<c+6,f(x)—f(c)<%<0

> f(x)<f(c) in c<x<c+d
So fis decreasing in the §— neighbourhood of c.

Note : If f'(c)=0, no conclusion can be drawn.
Let f(x)=x, then f’(x)=3x% and f'(0)=0

In 0 <x <0+8 & in 0-8<x<0, f(x)-f(0)<0
So f is increasing in N'(0,8)~D;

Let f(x)=x" Then f'(x)=2x& f'(0)=0

f(x)=f(0)>0 in both 0-3<x<0 & 0<x<0O+§

f(x) is neither increasing nor decreasing in any § -neighbourhood of 0.

3.3 Algebra of differentiable functions

Let f and g are two functions differentiable at C(e D, ng), then

(i) «f(x) is differentiable at ¢ where o€ R
(iiy f+g are differentiable at ¢ & (f+g) (¢)=f'(c)tg’(c)
(iii) f g is differentiable at ¢ & (fg)’ (e)=r(c)g'(c)+ f(c)g(c)

(iv) if g(c) ;co,i is differentiable at ¢ and
g

1Y 1oy L(0)8(0)= 1 ()€ (0)
(8] “ {z(0)f

(v) |f | is differentiable at ¢, f(c)#0
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Proof : Deduction of (i) and (i1) are simple and follow straight way from the
definition of derivative.

y Ule ) fate)-slel o (70 St)

- X—-c c

Existence of f', g"atc = lim —————~ S(x)=fle) = f'(¢), lim —=———= gl ) g(c) g'(c)

e xX—-c x—e

Due to continmty of £, g at ¢,

tim BRI _ ) o (0) 4 g(e) 7(6)

y—=c X—=-C
(iv) Given g(c) # 0, due to continuity of g at ¢, there exists nbd of ¢

or, interval / having ¢ as its interior point such that g(x) #0 in [/

Let xe D[i)ﬁf
4

ol (e LB £tx0)

x—c _g(x)g(c)

By hypothesis, lim M= f'(e),li g(x) g(e) _ =g'(¢)

yoe x-c ) x—>c x—-c

Due to continuity of g at ¢, lim g(x)=g(c)
=0

oo

o lim = lzf'c c)-fle)g'(c
So lim 25— {g(c)}[ (c)g(c)=f(c)g'(c)]
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As the limit of RHS as x —c¢ exists finitely, so the limit lim —Ul(x)_lfl(c)

X—e X—c

exists finitely.

Note The condition f (c) # 0 is required. otherwise the result may fail.

For example, f(x) =x and ¢ = 0.
Derivative of composite function (Chain Rule)

Theorem : If f is differentiable at ¢ and g is differentiable at f(c), then the
composite function go f is differentiable at ¢ and

(g=/) (€)= (/())-1'(¢)
Note that ¢ is interior point of domain of go f .

Let us consider the function #:D, — R as follows

. y=flc)
g'(£(e)), y=F(c)

Then lil}‘(l )h(y) =g (f(c)) = h(f(c)) & so h is continuous at f{(c).
y—=>fle

Again g(y)-g(f(c))=(y-f(c))h(y) for all yeD, (by construction of /)
Hence for x€ D, ,

(g2 £)(x)= (g F)e)=n(f (N (x)-7(e))

= for xeD, , &x#c

(o)) =(ge)e) iy L)=S10)

xX—-c X—-c

Continuity of f at ¢ & continuity of katf(c)= ho f is continuous at ¢.

As x>, RH S —>h(f{c))
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So lim (go/)(x)-(ge/)e)

X—e xX—-c

exists and is h( f (c)) f(¢)
= go f is differentiable at ¢ and
(g=7) (c)=£'(/(c))-1 ()
Derivative of inverse function
Let f be strictly monotone and continuous in an interval /(< R)

and let x, be an interior point of 7 at which f has a derivative f'(x,)=0.

Then #~' has a derivative at this point y, = f(x,), equal to %'(xo)

Proof : Here domain of #~' is an interval J (say).
By hypothesis, x, is an interior point of /. By definition of interior point, there

exists points p,ge/ suchthat p<x,<q and then f(x,) is interior point of the
closed interval J, = [f(p), f(g)] as f is strictly monotone.

f 1s continuous on [ p, q] < I, the interval J; = J (by LV. property of continuous

function), so ¥, = f(x,) is interior point of /.

Now i {f‘l(y)—f‘l(yo)}: M I €0 A O B
=¥, y=y, =¥ f(f_l(}’))‘f(f_l(}b))

Due to continuity of f L #7! is continuous at Y. s0 that
lim 7! = f! =X,
v I = (n)=x

Following substitution rule for composite function

lim {f_l(y)_f_l UO)}: lim {—X_XO }

¥ Y=Xo s=3y | fx)=f (xo)

since f'(x,) =0, we get
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XX 1 1

lim f(x)_f(xo) ) f'(xo)

Y=y X—- xo

{f’l(y)—f'l(yo)}: 1
Y—Xo 7'(%)

Note : Alternative proofs of the last two results follow from concept of
differentiability, discussed subsequently.
Diffentiability and differential

f(x) is said to be differentiable at a point of its domain if

lim

£ (0)=f (%)

consequenctly, lim
Y=X

f(x+Ax)— f(x)=A.Ax+g.Ax where 4 is independent of Ax and € >0 as

Ax—>0,
Let f be differentiable at x

Fx+Ax)- f(x) Cdve

From above definition,
Ax

A _
Taking Ax —>0, RHS — 4 so lim J(x+Ax)- /(x)

Jlim " exists & (= f'(x))=4

So differentiabity at a point of its domain = existence of first order derivative
at that point,

Ax)—
Converse let f'(x) exist. so lim f(x+Ax)- f(x)

Jim Ax exists & = f'(x)

F(x+Ax)—f(x)
Ax

Let ~f'(x)=¢ &s0o >0 as Ax—>0

= f(x+Ax)— f(x)= f'(x)Ax+e Ax where £ >0 as Ax—0

= f is differentiable at x and hence differentiability <> existence of derivative
at that point,

Note : 1. This result is of importance in the sense that the result differes for
functions /. R* >R
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2.1f y=f(x) & y+Ay= f(x+Ax), then
Ay = f(x+Ax)- f(x)=f"(x).Ax+e Ax where £ >0 as Ax —>0
Ay 1s increment of y for the increment Ax of x.

f'(x). Axis known as the differential of y, denoted by dy.
This dy # Ay but dx=Ax (taking f(x)=x, it is evident)

Y
y O (x+Ax, y+AY)
T
Y Iy
P(x,y)
i v
O M X

P(x, y) and O(x+Ax, y+Ay) are two neighbouring points on the curve.

d , IN ,
tan\p=£y=f(x)=m:>TN=f(x)Ax
=dy=1N
So dy=71TN but Ay=PN
& So dy# Ay

Alternative proof for diffentiability of composite function and Chain Rule.

Let f be differentiable at x(e Df) & g be differentiable at 1 (x) (e Dg).

Here we assume that the composite function go f can be defined in the sense
that (go f)(x)= g(f(x)), xeDy.

Here Ay = f(x+Ax)— f(x) = f'(x)Ar+e.Ax where £ —0 as Ax — 0 (taking
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Taking x = g(¥)

Ax=g(t + At)— g(f) = g (NAF+ 1) At where ) — 0 as At — 0o (1)

Ay =(f'(x)+e)(g'(1)Ar +nAr) where n—>0 as At —>0........ (2)

Ay =(f'(x)+e)(g’'(z)Ar +nAr)
:f’(x)g’(t)At+(f’(x).'r|+e.g’(t)+8n)At (3)

As Af - 0,= Ax— 0 due to the continuity of g.

As Ax—0,e > 0. Consequently, f'(x)m+e. j(f)+en—0 as At —0
Recalling (3), Ay =f'(x)g'(r)dt+7.A1(t=f'(x).n+e g'(r)+en)

where T—=0 as Ar >0

b _d
dr  dxc dt
Note Similarly the differentiability of inverse function can be discussed.

=y is a differentiable function of ¢ and

Theorem (Darboux Theorem) : Let f :[a, b] — R be derivable in the closed
and bounded interval [a, 5] and f'(a) f'() <0 . Then there exists at least one point
ce(a, b) such that f'(c)=0.

Proof : Let f'(a)>0, f'(8)<0
£, being derivable in [a, 5] is continuous in [a, b]. So fis bounded in [a, b] and

attains its bounds in [a, b]. So there are points c,de[a,b] such that

sup f=M=f(c) and inf f=m=f(d).
[a. 8] [a.2]

As f'(a)>0, So f(x) is increasing in some neighbourhood of & and hence there
exists § >0 that f(x)> f(a) in a<x<a+d.

If c=a, then f(x)>M in a<x<a+38 which is absurd. So c#a,

As f'(8)<0, f(x) is decreasing in some neighbourhood of b & so there exists

n>0 such that f(x)> f(8) in b-n<x<b.
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If c=b, then f(x)>M in b—n<x<b which is also absurd. So ¢ =&

So c<(a, b). By hypothesis, f'(c) exists. We propose to show that f'(c)=0.

If possible, let f'(c) > 0. Then there exists & >0 suchthat f{x)> f(c){=M) in
(c,c+8) (<=[a, b]) this is absurd, so f*(c)+ 0.

If possible, let 7'(c) < 0. Then there exists ' >0 such that f{x)> f{(c)(=M)
in (c-n,c)(<[a,b]) & this is absurd, so f’(c)#0. Hence f'(c)=0.

Corollaries (1) : Let f:[a,5]— R be derivable in [a, b] & f'(a)= f'(b). If
k be any number between f'(a) and f'(b), then there exists at least one point
ce(a,b) such that f'(c)=k.

Let us construct ¢:[a,5] >R defined by o(x)=7(x)- A«

Derivability of  in [a, 5] = derivability of ¢ in [a,5],¢'(x)=f'(x)-k

(@) (B)=(/'(a) ) 7'(8) k) <0

So by Darboux Theorem, there exists ¢ (a,b) for which ¢’(c)=0 ie
fle)=k.

(2) If f be derivable in a closed and bounded interval /, then the range set of f”
on [ is either a singleton or an interval.

If two distinct members p,, p, €J, there exists distinct elements x,,x, e/

such that f'(x;)=p; fori=1,2 Let x; <x,. So [x,x,]c/.
If p, < p < p,, by Darboux's theorem on derivative, there exists ¢ € (xl, x2)

such that f’(c)=p. So peJ. But p is arbitrary point between p, & p,. This

shows that if p;, p,,€ ./, then every element between p, & p, belongs to /. So J is

an interval in [ .
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(3) Let f: [a_, b]—> R be derivable on [a, #]. Then f’ can not have any jump
discontinuity on [«, &]

Let c<(a,b). We propose to show that

() if lim f'(x) exists, then it is f'(e), ce(a, b]

X—= 0=

(i) if lim f'(x) exists, then it is f'(d), d €[a,b)

x—>d+

(i) Let a<c<h & lim f'(x)=I(eR). We have to show that /= f'(c)

X—e—
Let /< f'(c). Let O0<e< f'(¢)-1.

As lim f ’(x):l, corresponding to above chosen £ >0, there exists & >0
x—c—0

such that f’(x)—!|<e whenever xe(c-38,¢)n[a,b]

So if pe(c—8,¢)n[a,b], then I—e< f'(p)<i+e< f'(c) (by above g)

So by Darboux theorem, there exists point & (p, ¢) such that f'(£)=7+¢.

Now £e(p,c)=Ee(c-8,¢)n[ab] & so by above f'(§)</+e. Thus we
arrive at a contradiction. So /¢ f'(c).

If possible let /> f'(¢). We choose & such that 0<g</— f'(c)

limof '(x)=!= Corresponding to above g, there exists n>0 such that
X—bem

I-g< f'(x)<l+& whenever xe(c—mn,¢)[a,b].

Let ge(c-n,c)n[a,B]. Then f'(c)</-e<f(q).

Again by Darboux theorem on derivative. there exists point 1 in (g,¢)
such that f'(t)=/-¢.

But te(g,c)=>1e(c—n,c)n[a, b] and hence f'(1)>1-¢.
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We arrive at a contradiction. So /3 f'(c).

As a result limof’(x):f'(c), a<c<b

X—o—

Similarly it can be shown that lim f'(x) exists = f'(c)

x—c+0

So a derived function on an interval [@, 5](=R) can have a discontinuity of
second kind only

(3) Let f '(x) exist and be monotone on an open interval (@, #). Then f’ is

continuous on {a, b).
If possible, let f* have a discontinuity at some point ¢ € (a, b).
¢ is interior point of (@, b) & we have a closed sub interval [a, B] of (a, b)
which contains ¢ in its interior.

By hypothesis #’ is monotone in [, B] & so the discontinuity at ¢ must be a
jump discontinuity. But a derived function can not have any jump discontinuity . So
Sf' is continuous on (a, b).

3.4 Theorem (Rolle’s theorem)

Let f:[a,b] >R be
(1) continuous in [¢, #] (i) derivable in (a, b) (iii) f(a) = f(b).
Then there exists at least one point ¢ <(a, &) such that f'(c)=0.

Proof : Continuity of f in [a, #] ensures the boundedness of f in [a, b] &

attainment of bounds in [a, &#]. Let M =sup f and m:[ing] f.
[a.,3] a,

There are points ¢,d € [a, b] such that f(c) =M, f(d) = m.

Case I : Let M =m. Then f(x) is constant function in [a, 5] & so f'(x}=0 in
(@ b)
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Case II : Let M =m. As f(a) = f(b), So at least one of M and m 1s different
from f(a) and f(#). So c=a,c#b (if M be different from f(a) and f(?))

Hence ¢<(a,b) & by hypothesis (ii) f'(c) exists.

If f(c)>0, there exists 8>0 such that f(x)> f(c) in c<x<c+8 where
(c.c+8)=(a,b). So f(x)>M in (c,c+8) which is absurd. So f'(c)#0.

If f'(c)<0, then there exists n>0 suchthat f(x)> f(¢) in (c—m,c)c(a,b).

Again f(x)>M in (¢—n,c) which is absurd. thus f'(c)+#0.

Consequence f'{c)=0.
Note : The above theorem gives a set of sufficient conditions for the vanishing

of f' at an interior point of D,. The conditions are not necessary. For example,

, lax<2
x-1 2—-x

3
f ’(x) =0 at x= 2 but f does not obey the conditions of Rolle's theorem in

[1, 2).
Geometrical interpretation of Rolle’s Theorem

If the two end points of the graph of y = f(x) be on the same horizontal line (i.e.
on a line parallel to x-axis) and if the graph be continuous throughout the interval and
if the curve has a tangent at every point on it except possibly the two end points, then
there must exist at least one point on the curve at which the tangent is parallel to x-
axis.

Examples :

(1) Let f,g, h:[a,b] >R be continuous in [a, 5] and be derivable in (a, 5),
then show that there exists ¢ <(a, b) for which
fle) g'(e) #{e)

fla) gla) h(a)=0
1(0) &(b) hd)
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flx) glx) hix)
Let us construct F:[a,b] >R as F(x)=|f(a) gla) h(a)
)

Continuity of f, g, /# in [a, b] = continuity of F in [a, &].

f(x) g(x) #(x)
F'(x}=|fla) gla) h(a) exists in {a, b), as f', g', K exist in (a, b)
f(b) g(b) k()

Also F(a) = 0 = F(b). So F(x) satisfies all the conditions of Rolle’s Theorem in

[a, b]. Therefore by Rolle’s theorem, there exists ce(a,b) st. F'(¢c)=0

Hence the result follows.
(2) Let f, g be differentiable on the inerval /. Let a, bl and a<b and

f(a) = 0 = £(b). Show that there exists ¢ {a, &) such that

f'(e)+7{e)g'(e)=0
We construct the function /:[a, 5] —>R as h(x)= f(x).e5™

Continuity of f & g in [a, 5] = continuity of 4 in [a, 5].

H{(x)=f'(x) 21 4 (%) 4. &'(x) exists in (a, b) as f, g, are derivable in

(a, )

h{(a)=0="h(b) by given condition. So by Rolle’s theorem, there exists
ce(a,b) such that #’(c)=0= 5[ 1’ (c)+ f(c)g'(c)} =0.

As ¥ 20, so f(c)+ f(c)g’(c)=0 for some ¢ e (a,b)

Particular Case f(¢)+Af{c)=0(keR) under the same set of conditions

mentioned above.

(3) x*+2x*—-6x+2=0 has
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(A) 4 real roots (B) exactly two real roots (C) no real root (D) one pair of equal
roots.

F© =2 f(1)=-1,f(2) = 14. f (x) is continuous function &
F(O) f()<0, £(1)f(2)<0.

By Bolzano’s theorem on continuous function, f (x) must vanish at least once in
(0, 1) & at least once in (1, 2).

If possible, let it have more than two real roots. Then by Rolle’s Theorem,

f'(x) must vanish at least twice & f”(x) must vanish at least once. But
F(x)=12x* +4>0 for all x. (B) is true.

4) If a<c<b and f"(x) exists finitely in [a, 4], then there exists # <(a, b)
such that

f(a) f(®) f{c) 1,
(a-b)a-c) (b c)(b- a) (c-a)(c-b) 2f ()

Let us construct the function ¢:[a, 5] >R as follows.

_(x—b)(x- (x— C’)(x 9 cpy EZDED)
¢(x)_ _ _ f(a)+ (b) (c—a)(c—b)f(c) f(X)
Continuity of f in [a, 5] = Continuity of ¢ in [a, &].

2x—(b+c)

¥(x)- - —(a+c) 7(b)+ 2x —(a+b)

o0 G2 O ey @)

& as f'(x) exists in (a, ), ¢ exists in (a, b). Also d{a)=0¢(b)=¢(c)=0

Given that ¢ < ¢ < b, so ¢ satisfies the conditions of Rolle’s theorem in both
[a, c] & [c, b].

By Rolle’s theorem, there exists & e(a,c)& &, e(c, b) such that
¢(&)=0=0¢'(&,)

As f7(x) exists in (a, b)
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2

caen’

2

(p”(x)=(a—b)(a—c)f( b)+

-

a)+

2
b-ai-a)’
exists in (él,éz). Applying Rolle’s theorem to ¢’ in [&1, ?;2], there exists

ke(&.&,)=(a,b) such that ¢"(k)=0

flay S ) 1
(a-b)(a-c) (b-c)(b-a) (c-a)(c-b) 4 (k)

(5)let f,g: [a, b] — R be such that each 1s derivable in {a, b), each 1s continuous

=

at @ & b. Then there exists c<(a, b) such that

F'(eNg(b)-g(a)}=g () f (b)- 7 (a)}

We construct h:[a,b]—)R as follows

h(x)= f(x){g(b)—g(a)}—g(x){f(b) —f (a)} for all xe[a,b]

Continuity of f & g in [a, b] = Continuity of 4 in [a, &].

H(x)=f(x){g(b)-g(a)}- &' (x}{f(8)- f(a)} exists in (a, b) as f', g’ exist
in {a, b).

h(a)=f(a)g(b)-f(b)g(a), h(b)=~1(b)g(a)+ f(a)g(b)

and so #{a)=h(b)

So # satisfies all the conditions of Rolle’s theorem in [a, b]. By Rolle’s theorem,

there exists ¢ < (a,b) such that #(c)=0.

= f'(e){g(8)-2(a)} =g (c){(b)- f (a)}
(6) Show that between any two real roots of ¢ sin x =1, there is at least one real

root of " cos x+1=0.

Let f{x)=¢"sinx—1 and a, b be two real roots of f(x) = 0
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Let g(x)=e*—sinx, a<x<h.

g is continuous in [a, b] and g'(x)=-e* —cosx exists in {a, b)

Also g(a)=g(h)=0 by above hypothesis.

g satisfies all the conditions of Rolle’s theorem in [a, b] & so by Rolle’s theorem,
there exists ¢ < (a,b) such that g’(c)=0 i. e. ¢ +cosc=0 or 1+e° cosc=0.

= ¢ is root of e cosx+1=0

(7) Let f:[a,b] >R be continuous in [a, 5], differentiable in (a,5) and be
nowhere zero in {«,b). Show that there exists 0 (a, b) such that

G
f(®) a-96 b-0

We construct g:[a, 5] >R as follows :

g(x)=(x-a)(x-2) f(x) for all x&[a,s]

Continuity of f in [a,b]=> continuity of g in [a, 4]

2(x)=(x=-8) f(x)+{x—a) f(x)+{x—a)(x—b) f'(x) exists in (a, b) as
/" exists in (a, b). Also g(a)=0=g(b). Applying Rolle's theorem to g in [, 5],
there exists at least one 8 <(a,b) such that g'(6)=0.

=(8-5)f(0)+(6-a)f(8)+(6-a)(8-2) f'(8)=0

e 1
f(®) a-0 b-0

(8) Show that the equation xlogx=3—x has at least one root in (1, 3).

Let f:[1,3] >R be defined as follows : f{x)={(x-3)logx.
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3 -3 . .
£ is continuous in [L 3], f'(x)=logx +x7 exists in (1,3) & f(1)=0= f(3)
Applying Rolle's theorem to 7 in [1, 3], there exists ¢ < (1,3) such that f'{c)=0

:logc+1—§:0 re cis root of xlogx+x=3
c

(©) If £, g exist in [a,8] & g'(x)#0 in (a,b), show that there exists
ce(a_, b)

fle)=fla) _f'(e)
such that g(b)—g(c) = g'(c)

We construct /7:[a,b] > R as follows :

h(x)=f(x)g(x)- f(a)g(x)-g(8) f(x) for all xe[a,b]

Existence of f" g’ in [a,b]= continuity & derivability of 7 in [a, ]

Also h{a)=-g(b) f(a)=h{(b). Applying Rolle’s theorem to # in [a, b], there
exists c<(a, b) such that

H(e)=0= f(c)g(e)+/(e)g'(c)-F(a)g'(c)-g(2)f(c)=0

_ S f(e)-fla)
g'(c) -glc)+g(d)

EXERCISE

1. If f’,g’ are continuous in [a—h, a+h], derivable in (a—h, a+h),

g”(x)= 0, show that there exists d €(a—h, a+h) such that

flath)-27(a)+ fla=h)_ f"(d)

gla+h)-2g(a)+gla-h) g"(d)
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2. Let f,g:[a,b]> R be continuous in [a, b]. Assume that g, g’ are nowhere

zero in [a,b] & (a,b) respectively..

fla) _f(b) fle)_ o)

m—m_ Show that there exists ¢ (a, b) such that glc) - g’(¢c)

Let

3. Let ;.-Eo % =0 where C, € R for all £, Show that the equation

Co+Cix+......+C,x" =0 has at least one root in (0,1)

4. Let u(x),v(x),u"(x),v'(x) are all continuous on R and s’ —z'v20 in R
Prove that between any two real roots of #(x)=0, there lies one root of v(x)=0.

5. Examine whether the equation x* —3x+% = 0, k € R, has two distinct roots in
(0, 1).

6. Correct or justify the statement : Rolle’s Theorem is not applicable to |x|
in any interval [a,b]cR.

7. Using Rolle’s theorem, show that the derivative f ’(x) of the function

T
xsin—, if x>0
fx)= x

0 ifx=0

vanishes on an infinite set of points of the interval (0,1).
8. Let f,g:[a,b] > R be continuous in [¢, b], f”, g” existin (a, ), f& g
vanish at end points ¢ and b, g"(x)=0 in (o, b).

If a<c<b &g(c)#0, show that there exists &< (a, 5) such that

ey f(E)
gle) £'(%)
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(Hints : Contruct F:[a,b]> R as F(x)= f(c)g(x)-g(c) f(x) for all
xefa, b))

9 let f:R—R be differentiable upto any number of times and let

for some nelN, f(0)=f(0)=.=f"=0

Show that f* (x)=0 for some x&(0,1)

10. Show that each of the equations

(i) sin{cos x)=x (i) cos(sin x)= xhas exactly one root in (0, %)

Lagrange’s Mean value theroem or first mean value theorem of Differential
calculus.

Let f ;[a, b]—) R be (i) continuous in [a, b] (ii) derivable in (a, b). Then there
exists at least one point ce({a,b) such that f(b)- f(a)=(b-a) f'(c).

Proof : We construct F:[a,b]> R as follows,

F (x)= f(x)+ Ax where the constant A is to be determined from the functional
relation F (b)=F (a)

Continuity of £in [a,b]= continuity of F in [a,5] &

derivability of f in (a,b):> derivability of F in (a, b). By construction,
F(b)=F (a)

So F satisfies all the conditions of Rolle’s theorem in [a, b]. Hence by Rolle’s

theorem, there exists c¢<(a, b) such that F’(¢)=0.
So F'(c)=f{c)+ A=0— A=~ f'(c) & F(b) = Fa) = -4 = LS
f(8)-fla)_ .
b—a =/(e)

Note : 1. Conditions stated above are sufficient but not necessary.

Therefore
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Consider the function f:[0,3] > R defined by

0 05){(l
2
1 1 3
Xf=qx+—, —Sx=s—
f() 2 2 2
3
—x+1, —<x<3
2

f does not sastisty the conditions stated above but
f(3)—f(0)=1=f,(gJ
3-0 T \4

2. Geometrical Interpretation : If the graph of a function be a continuous
curve having tangent at every point on it except possibly the two end points, then

there is at least one point on the curve at which the tangent is parallel to the chord
joining the end points.

Examples : (i) Let { have the property that

f7(x)|<1 for all x in (0,1) and let

f be continuous at x=10,1. Show tht the sequence {f (lJ} is convergent.
njl,

We note that LMV theorem is applicable to f in any interval R

Let € >0 be given. By Archimedean property of R, there exists natural number
K such that K e£>2 Let m,neN be such that m, n>K.

1 1 11
By L M V theorem, there exists at least one point c € (—, —J [or,c € (—, —D
mon nom
'R L
m n
1 1
m n

1 1

mon

Such that

) 11
S (C)|< ;‘;‘ (by hypothesis)

2
<—<¢g for mn >K
K
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= { I [l)} is cauchy sequence in R & so {f (lJ} is convergent
n H H

n E

sequence in K. Hence { f (l)} has a limit in R
nll,

2. Find real solutions of 2" +5" =3" + 47
The equation can be written as 5" — 4" =3" —2°
We consider the function f(¢)=¢" in (i) [4, 5] (i) [2, 3]
£ 15 continuous in both the intervals & is derivable in both, Applying L M V
theorem to ¢* in both [4, 5] and [2, 3], we see that there are points #, €(4,5) &
1, €(2,3) so that
5 -4 =y & 3 -2% = x1,")
ol
Therefore th"‘_l = th"‘_l = [%J =1=x-1=0 as ¢, ¢, belong to different
sub intervals & so f; #1,
Hence, x=1
Hence x=0,1 are only solutions.
3. f:[0,2] >R is differentiable & f(0)=0, f(1)=2, f(2)=1. Show that
there exists ce(0,2) such that f’(c)=0
Applying LMV theorem to fin [0, 1], there exists &< (0, 1) such that
S)-r(0)=01-0) 1" (&) = f(E)=2
Applying LMV theorem to fin [1,2], there exists ne(1,2) such that
f(2)-rM)=2-1)f )= (n)=1-2=-1

So 7'(£) f'(n) <0. By Intermediate value theorem on derivative. there exists

ce(&n)=(0,2) such that f"(c)=0
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4. If ¢”(x)=0 for all xe(a,b), show that

¢(x1‘gxz}< {¢' xl +¢ XZ)}

for every pair of points x;, x, in (a,b)

X+ X,

Let x,>x & so 4 <

o)+ 0l6) 20 2= o) -0 152 || - fo [ 252 -o(x)}

- % (x5 = %) {¢'(€) - &' ()} for some

ae(xl xl+x2.J&'ﬂ€ (x1+x
bl 2 . ¥

Again by hypothesis, ¢”(x) exists, so by applying L M V theorem to ¢’ in

<Xy

sz by L M V theorem ... (1)

[€.], there exists ce (&, n)

o' (&)-¢'{n)=(6-m) ¢"(c)= 0 by hypothesis ..... (2)

By (1) & (2), ¢(x‘;x2]$%{¢(xl)+¢(xz)}

Note : Converse is not true. f (x)=|x| fulfils the given result but |x| is not
derivable at 0.

5. Let f be a function such that f(x)>0 for all x & f’(x) be continuous at

every real x. If f’ (t) 2 /f (¢) for all £, show that

\/ z\f for all x=1

By hypothesis, ¢ (x)=./f (x) is derivable for all x>1. By L M V theorem

there exists &<(1, x) such that
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0(5)= 0 (1) =(x1) ' &)
J(& ,

= 70 -\ ~(x-1) 5 J% (x=1) (s £ (1) 27 ()

6. On the curve y= x°, find the point at which the tangent line is parallel to the

[

chord joining the points A4(-1,-1) and B(2,8)
Let us refer to the geometrical interpretation of L M V theorem.

By L M V theorem, there exists £<(=1,2) such that

F(2)- £ (-1)=(2+1) f' (&) for some E(-1,2)

(taking f(x)=x" in [-1,2])

=9=387 3=¢=1+1. Here -1 is not interior point of [-1,2] or-1&(-1,2)

So =1 ie (1, 1) is the point at which the tangent is paralled to AB.

7. Apply mean value theorem to find derivative of a function, assuming that the
derivatives which occur are continuous.

Let F{f(x)} be the composite function

Mean value theorem 1is applicable to f(x) and there exists :'ge(x,x+ h)or

(x+#, x) for which

Sx+h)=f(x)+nhf"(§)=u+k say that u= f (x)& k=h 17 (&)

Mean value theorem 1is applicable to F(w) and there exists
ne(u,u+k)or (u+k,u) for which F(w+k)=F(u)+k F’(n)

As p—0, E—x Also k=h f'(§)— 0. Further as k — 0, N—w . Therefore

fim DALMY FU () F (atk) = F ()
h=0 h h=0 h

. kF(m) , : .
= lim - =lim f (€) F7(n) exists & is
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IV F ()= f () F L f (%)}
8. If f be continuous at ¢ and lim f’(x) exists finitely, then show that f’ is

X—

also continuous at c.

Let lim £ (x)=1 (< )

Hence there exists an interval (c, c+h], h >0 at every point of which f’ exists
& so fis continuous in (c, ¢+ h)]. Given that fis continuous at ¢. So fis continuous
in [c,c+h] & f’ existsin {¢,c+h). By L M V theorem, there exists

E.e<<x<c+h

such that £ (x)- f(c)=(x-¢) f' (&)

As !‘iglf’(x)=!, 50

lim (€)= lim £ (&)=l fim 232 pry,

x—c+0 E—e+0 ek X—C
Similarly, considering [c—h, ¢) & arguing as in the previous case, Lf’(c)=1
s0, fle)=l= llgl f'(x)=1"(¢) & therefore f7 is continuous at c.
Increasing & decreasing nature of function in an interval :

Result : If f(x)is continuous in [a, 5] and f’(x)>0(or<0) in (a,b), then

S (x) is increasing (or decreasing) function in [a,b]. If f’(x)=0 in (a,5), f (x)
is constant in the interval.

Proof : We choose x|, x, so that a<x <x,<b. Applying L M V theorem to f
in [x,x]
there exists &e(x;, x,) such that f (x,) = f (%) =(x; = x) £ (&)

So f(8)>0= f(x)> f(x)
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(f @) <0= f(x,) < f(x))
It is true for every pair of points x;, x,of [a,b]. Soif f/(x)>0 for all x. fis
increasing in [a,b] & if f’(x)<0 for all x, f is decreasing in [a, b]
If f'{(x)=0 then f(x)=f(x,) & so f(x) is constant in [a, b]

I+x 2x
<_
l-x 1l-x

Examples ; 1. If 0<x<l, 2x<log

Let f(x)=log:+—x—2x,03x<1
—-x

1 1 2x?
’ =—+——2=
/ (x) I+x 1-x 1-x?

>0 for all xe(0,1)

Next let g (r)=logr, re[l-x,1+x], 0 <x < 1. Applying LMV theorem to g(?)

in [1-x, 1+x], there exists &e(l-x,1+x)

for which &(1+x)-(1-¥)=2¢ 8 (€)=

:>g(1+x)—g(1—x)=log(1+x)—log(1—x)<12—x,0< x<1
—x

2 sinx B
2. Show that —<——<1 when 0<x< =

T X 2

Let us construct g [0, g] — R as follows :

sin x s
g (x) — <x >
1 x=0

) ) ) n , Xcosx—sinx o
So g is continuous in |0, = | & & (X)=x—2 exists in 0,5
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Let g(x)=xcosx—sinxin [O, g] & so
’ 1 i T
' (x})=—xsinx+ cosx—cosx < 0in (O,E)

, . T
So #{x)<£(0) or xcosx—sinx<0. Hence g (¥)< OIH(O,EJ

. .
:g[—]<g(x)<g(0) & hence E<m<1in[0,£)
2 T ox 2
3. Show that tanx>430< x<Z
x sin x 2

. n
Let f(x)=tanxsmx—x2,03x<5

f is continuous in [0, p](p< g) &

f’(x)=seczxsinx+sinx—2x=t(x)in[0,p]

2

'(x)=2 sec® x tan x.sin x + SeC> X COS X + COS X — 2

= (\/secx —+cos x)2 +2sin® xsec’ x
f(x) is continuous in [0, p] & r'(x) exists in (0, p). Also #’(x)>01n (0, p)

=1(x)>1(0), x>0 & so f’(x)>0:>f(x)>f(0),0<x<g

tan x x
> , 0<x<%

Consequently, Gnx

4. Let ¢(x)=f(x)+ f(1-x)& £ (x)< 0in[0,1]. Show that ¢ (x)is monotonic

1 1

increasing in [0.» 5] and monotonic decreasing in [5 1]
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By hypothesis, ¢’ (x)= f’(x)- f’(1-x)

Applying L M V theorem to f’ in [x,1-x] or in [I-x,x], there exists
&e(x,1-x) or (1-x,x) such that

S(x)= £ (1=x) = (26 -1) /)

[\
)
o)
1A
=

1A

| =

By hypothesis f”(&)<0 & so f’ (x)—f’(l—x)

I/\
I/\

2

l\-.)|'—'
ann] SRR

1
So ¢(x) is increasing in [0.» } & is decreasing in [
X T
5. Show that cosx+xsinx>1, XE(O, E)
Let f({x)=cosx+xsinx, 0<x %
. . . | ., : : . T
S(x) is continuous in |:0, 5:|, Sf7{x)=—sinx+sinx + x cosx exists in (0, E}
, . i 7
Also f’(x)>0 in (05) So f(x)>f(0), 0<x<5
. n
= cosx+ xsinx >1, 0<x<5

6. Show that f(x)=tan™ x defined on (~oo, =) is uniformly continuous & f’
is also uniformly continuous.

We note that Jf~ (x)= 7 exists for all yeR

I+x
Let us consider any pair of points x, yof R. By L M V theorem, there exists

&e(x, y) such that

|F ()= () =lx- ¥

<|x=y|<8 for any pair of points x, yeR

11;2

satisfying |x— y|<8_, 8 depends only on ¢. So f is uniformly continuous on [ .
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(1)

Again |f7 (x) - f’ (y)| =|x—=y| f” () for some ne(x, y) (by L MV theorem)
()= & so £ (x)|< 2 for all x .(2)
‘ 141

x?+1
For if |x|<1, > [x]=|f7(x) <2

” 2x

&if =L |f (x)|< o <2
Recalling (2), |/ (x)- £ (y)| <2|x-y|<e whenever [x—y[<8, 3 =%

for any pair of points x, y of R
Hence f’ is uniformly continuous on R

7. Find all possible positive solutions of x*+32=u?+v?, ¥ +3° =4+

where #, v be fixed positive constants.

only

Obiviously x=u, y=v and x=v, y=u are two solutions of the system.
Let x = x3, b =y3, 1 =u3, v = v
We consider the function #(s)=/"3 in (i) [0, ] €y [, 3]

By L M V theorem, there exists E(ul, xl)& HHE ("1, yl)such that

-1

Yy 2 2
X - = (x _“1)51’1 B & -n=n ‘yl)gfz

. 2 2 27 27

But #&(m,x)&6e(v, ). So 22, So x=u, y=v &x=v, y=u are

solutions.

Exercise :

1. Show that 0 < |:10g(1+3c):|_1 —x <l x>0
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-1 .ex -
2. Show that @< ¥ log [

1)<1, x>0

3. Let f:[1,3]> R be a continuous function that is derivable in (1, 3) with
derivative f(x)=|/ (x)|2 +4 for all xe(1,3)
State with reasons, whether f(3)— f(1)=5 is true or false.

fle)=fla) _ f(b)=f(c)

c—a b-c

4.If f”(x) existsin [a, 5] and for some ce(a, b),

show that there exists at least one point &e(a,b) for which f”(&)=0.

5. If f’(x) exists for a<x<bh and |f(x)|—> e as x— a, then show that

fx)| - as x5 a.
(Hints Apply LMV Theorem to f in [x, 5]).

6. Let f be continuous in [0,1] and differentiable in (0,1). If 7’ be monotonic

f(x)

increasing in (0,1), prove that (x): is monotonic increasing in (0,1).

7. Show that tan™'x, - tan™! X, < x, —% where x; > x

8. Determine the intervals of monotonicity for the following functions :
(i) f(x)= 2% —9x% —24x+7
(i) f(x)=4x> —21x% +18x+20

(i) f{x)=sinx+cosxin[0,2n]
9. Show that :
3 3
(a) x—%<tan'1x<x—%, O<x<=l

3
(b) x—%< siny<x, x>0
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10. Prove that for 0< p <1 and for any positive @ and b the inequality

(a+b)’ <af +b7 is valid.
(Hints:Takef(x)=1+xp—(1+x)‘°,x20&thenx=%)

11. At what value (s) of b, does the function f (x) = sinx — bx +c¢ decrease along
the entire number scale ?

12.Let f:R — R be differentiable and that 7(0)=0, f(4)=2, f(6)=2 show
that

(i) there exists x<(0,4) such that f'(x)=

it =

(ii) there exists xe(0,6) such that f(x)=

13. Let f:R — R be a differentiable function. Let f’(x)> f(x) for all xeR
& f(x,)=0. Show that f(x)>0 for all x> x,

(Hints “Let g{x)=e™ f(x) & consider the sign of g (x))

14, Let g¢>5>0. Show that axl"?'r - blrr <(a _b).zl"'; for all p>2
(Consider f(x)=x"" —(x—l)-'!'” , x21; sign of f’(x)& then put x= %)
15. Justify the following

(@) if x>0, x> 3sinx

44 cosx

(b) if 0<x<752, 0< xsinx—%sin2x<%(ﬂ:—l)

() Jrr<a+272 i vs1s
X
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(d) tan“x<%+x7_l, if x>1

(&) plx-D<x?—1<px¥™ (x-1), x>1, p>1
Cauchy's Mean value theorem :

Let f,g:[a,b]> R be such that (i) both are continuous in [, 5] (ii) both are
derivable in (@, &) (i) g’(x):bo in (&, b), then there exists at least one point
ce(a,b) for which

fb)-fla) _ f(e)

g{b)-fla) g'(c)

Proof : We construct the function F(x)= f(x)+ Ag(x) where the constant A is

to be determined from the functional relation F{a)=F(b).

f(b)=fla)
g(b)-g(a)

2(b)= gla), for if g(b)=g(a), then g would satisfy all the conditons of Rolle’s

Fla)=F(b)=>-4= In this connection, it is to be noted that

theorem in [a, 5] and so g'(x) must vanish at least once in (@,5). But condition (iii)
tells otherwise. So g(b)# g(a) & -4 is well-defined,

Here F'(x)=f'(x)+ Ag’(x) exists in (a,h) by condition (ii). Also F is
continuous in [¢,5] by hypothesis. By construction, F(a)=F(b). So F satisfies all

the conditions of Rolle’s theorem in [a,5]. By Rolle’s theorem, there exists at least
one point ¢ € (a,b)for which F’{c)=0.
fo)-fla)_ f'(e)

7€) Hence _
g0) " gb)-gla) g10)

Note : Putting g(x)=x in [a,b], we get LMV theorem.

_I)

Examples : (1) If £ exists in [0,1], show that f{1)— f(0)=: ” has at least

So F,(C)=0=>—A=

one solution in (0,1).
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We take g(x)= x* in [0,1]. Both £, g are continuous in [0,1], are derivable in
0, & g’(x) # 0 1n (0,1). By Cauchy’s mean value theorem, there exists at least one
f(l)_f(0)=f,(c) :>f(1)—f(0)=—f () &socisa
g)-¢(0) ¢() 2¢

S(x)
2x

point ¢<(0,1) such that

solution of f(1)—f(0)=

2.Let f:[a,b]> R be continuousin [a,b], derivable in (a,b) where 0 <a <5.

Show that for some c & (a,b)

, b
1) f(a)=er"(e)1og 2]
We take g(x)=logxin[a,b],0<a<b. Applying CMV theorem to f, g, in
[a, b] there exists ¢ e(a,b) such that

[O)-1@)_ sl fB)=ra)_ .
gb)-gla) g log(é) =)

3. Let f, g be differentiable on [0,2] such that f(0)=2, f(2)=
£(2)%0,2(0)= 0, /(¥)= '(x) () in (0, 2). Find g(2)

f(2)-
By C M V theorem, there exists ¢ < (0,2} such that 8%2;—8’(0) P ©)

5-0
g(2)-0

=1=2(2)=

3.5 Taylor's Theorem

Let f:[a,b] > R be such that (i) f ("'1)(x) is continuous in [a,b] (i) f ("](x)

exists in (a,b).
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Then there exists 8<(0,1) such that

10)= slay+o-ar @O e+ CO ),
where
(b — a)’-‘ (1 — e)”—P # : : ot
T /" [a+8(b-a)]. p e N (schlomilch — Réche'sform)
R = (b= a()n Ellie) /" [a+6(b—a)](Cauchy's form)
(b ;T)ﬁ /" [a+6(b—a)](Lagrange's form)

Proof : Continuity of 7' in [a,b] implies the existence and continuity of

f, fr, f”,mfn—Z,fn—l in [a,b]

We construct ¢:[a,b] > R as follows :

¢(x)=f(x)+(b—x)f’(x)+%f”(x)+..‘ (Ezn x{; AU+ A -x)

where ) is a constant to be determined from the functional relation ¢(d)= ¢{er).
¢ is continuous in [a,b] by hypothesis (1)

(0= (=7 (0-0) 170} + CE 17 )™

exists in (a, b)
By construction, ¢{a)=4¢(b). So ¢(x) satisfies all the conditions of Rolle’s
theorem in [a,b].
Therefore, by Rolle's theorem, there exists ¢ e(a, b) such that ¢’{c)=0
by
= ((n—i)T

Therefore ¢(b)=¢{a) implies

r(e)=tplb-ot ==
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f(b)=f(a)+(b—a)f'(a)+@f”(a)+-~
(b_a)n—l - (b—c)”_p(b—a)p Y
oy Ty S

As a<c<b we can write ¢=a+6(h—a) for some 6(0,1).

(b-a)"(1-6)""

We write R, =
(n-1)ip

f" [a+6(b—a)] (schlomilch & Roche's form)

n -l
For p=1, R, = (b—a) (1 —9) f" [a+9(b—a)] (Cauchy's form)

(n-1)!

For p=n, R,= %f” [a +6(b —a)] (Lagrange's form)

Note : 1. The relevance of these forms by taking p = # & p =1will be discussed

in the subsequent results.
2. The readers should note the particular forms of this theorem (also known as

Generalised mean value theorem) by taking »=2,3 etc for solution of problems.
3. Taking b=a+h,

2 H-1 it

Flath)=fla)+ hf’(a)+%f”(a)+...+ A (a)+%f”(a+9h)

for some 0<(0,1)

Problems : (i) Let 7! (x) be continuous and # ¢, the number § which occurs

n

in the Lagrange's form of remainder of Taylor's theorem, viz, h—l S"(a+6h) tends to
n!

1
1 as h—o+.

We know that—
2 hn—l

4 h »* H=— h” it
Slx+h)=f(x)+hHf (x)+af (x)+ +mf l(x)+;f (x+6h) for

some 0€(0,1).
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By hypothesis f"*! (x) exists & so

hz hn F h’H'l H+ ’
Flerh)= (Y )+ ()t — )+ (nH)!f( U (x+0h)

for some €’ (0,1)

These two imply f”(x+9h)=f”(x)+%f(”+l)(x+9’h)
n

By LMV theorem f” (x+6k)— £ (x) =0k ") (x+00"#) for some 8" (0,1)

o (xvom)

So 87" (x+00”h) =
o O x ) n+1

1
H+l M M M m+l llm 9 _-
As f""(x) is continuous by hypothesis & as £ (x)#0 we get pmo=——-

RN AN
2. For x>0, show that 0<ginx—| x—-—+—-—|[<—

. . T
Let f(x)=sinx. Then f( )(x)=sm(x+7) for all xeR, nelN

These £ (x)'s are continuous for all x.

For x=(0 we have

’ x2 2 xn—l m—l x" H
for some Q¢ (0,1) (taking @ = 0, b = x in Taylor's theorem with Lagrange's form

of remainder)

We take n=7&n=9 respectively :

X3 5 7

. X x
Sin X = x =5+ 2o == cos (6,x) for some 6, €(0,1)
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x3 xS 7 9

& e TR TR (8,x) for some 8, (0,1)

As —1Zcos (ka)s+1 for £=1,2 (here), so for x>0, we get

*ox ) 2o XX

X——+———=<sinx <y ——+———+—
3571 3507 9l

Expansion of functions :
Taylor's infinite series suppose f possesses continnous derivatives of every

order in [a,a+h]

2 hﬁ—l

e

Then f(a+h)=S,+R,
If now it is given that R, — 0 as 5 — oo, then lim S, = f(a+4)
H—e

Hence under the condition that lim R, =0, the infinite series
H—¥co

hz hn
fla)+hf (a)+ Ef”(a)+...+;f" (a)+ ... converges to f(a+h)

This result can be stated in the following way also.

Let £ be defined in some open interval 7{c R)containing '’ and that derivatives

of every order of f exist & be throughout 7. Let there exist Af e R* such that

f”(r)|£M for all re/ and for all neN, then following Lagrange’s form of

remainder,

n _ E _ w+l [:n+l)
f(x)=f(a)+z(x k?) f(k)(a)+(x 01n+]1f)l ©) for some cel.
P -

As p — oo, the upper bound in RHS tends to zero. So taking # — oo

o= S g

!
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Maclaurin's infinite series :

If f possess continuous derivatives of every order in [0,/#] and x[0,/] and if

further lim R, =0, then 7 (x)= 7 (0)+xf’ (o)+ (o)+”_+% F(0)+.00

H—co

Expansion of some elementary functions :
L f(x):sinx, xelR

\ ] nw
For all €N, f (”](X ) =sin (X "‘7} & these derivatives are continuous

H

: , X" X (nm
R, in Lagrange's form R | = — ' (ox)= —sin [74.935) for some 6 <(0,1)
xn
=|R |<_ As lim—=0 solmR, =
H—ee pl H—yoo

Hence Maclaurins expansion is valid here & so
2 n

f(x)=f(O)+xf’(0)+;—!f”(0)+‘..+i—!f”(O)+..‘
) X3 XS el xZn—l
=:~smx=x—§+§—...+(—l) (2n_1)!+..., xeR

I f(x)=¢*, xeR
Here f ("](x)=e"‘ continuous for all xe R

H H

x
R"lL ; Eeﬂx’ BE(O,])

Il
=~
>

-
p—

Il

e™ < e and llmm_0=>hmRyi 0

Hte

» f(x)=f(o)+xf’(o)+’;—2,f"( o+ A5 p (o)

X
=sef=l+x+—+ +—+ ., xelR
21 #!
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III. f(x)zlog(l+x), -l<x<1

PR )]

(1<) -, x> —1 & these £’ are continuous, —1< x<1
1+x

To consider lim Rn

Fl=—s o
CaseI: Let O<x<l1
xﬁ

R,|, == f"(ex) for 8(0,1)

!

= 1+9x) for some §<(0,1)

Here 0< X <1 sgo llm(
1+6x

H—Fe

) =0 Also 11ml=0

p—res H

1+09x

= limp =g

=3 W

Case Il 1< x<0

(In this case, it 1s not possible to ascertain flri_‘;‘;Rn if R,be considered in
Lagrange's form

|
To substantiate this claim, let ¥ = —~, 0<B< 3 We see that R, +> 0 as 51— o)

Xﬂ

We take R, in Cauchy's form = RHL = ( 1)'(1—9)”_l £ (6x) for some
n—1)!

8e(0,1)

a1 (1-8Y"
R _ _1."?1 i
Here f-‘lC' ( ) X 1+ 6x []-l-ex)

1 1
Also |x|<|:>i2)1lx =0. Again m<1—_|x‘

consequently Af}oRn =0
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Thus the conditions for Maclaurin's expansion of log(1+x)are satisfied.

Consegently 7(x)= f(0)+xf"(0)+ J';—2!(;‘“”(0)+ o+ i—}:f” (0)+...

2 3 _ =1 _n
& log(l+x)=x—%+%—...+(l)—x+...

n

1 (_l)n—l

If x =1 the series in RHS is 1—l+—...+
2 3 n

+ ... which is Alternating series
& 1s convergent by Leibnitz lest.
So the region of validity of above expansion of log(1+x) is —1<x<1
Iv. f( x)= (1+x)’” where m is any real number other than positive integer.
(If neN, the series will be finite series expansion having (n+1)terms)
Here f(”) (x)=m(m=-1)(m=2)..(m-n+1)(1+x)""
We take |x|<1 & f”-s are continuous in —] < x<1.

xﬂ

Rnlc' = (??—1)' (1_8)”_1 f“ (BX) for some B¢ (0, 1) .

_m(m=1)(m=2)..(m-n+1) ,(1-6 Y -
- (n-1)! [1+9x) - (1+6x)

. mim=1)..(m—n+l1) ,
We know that lim (m=1-{ )x =0(as x| <1)
=20 (n—1)!

As —l<x<l, 0<6<I, we have 0<
1+ 06x

n-1
<1 & so (—) — 0Qasn — oo

1+ 06x
If (m—1) be positive, 0< (1+6x)"" < 2™ & if (m—1) be negative,

(1+6x)"" < (1—|x|)m_l. Asresult R|. —0 as 5 — oo

"lC'
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The conditions for the Maclaurin's expansion of (1+x)m are satisfied & so

2 H

S ()= O+ (0 77 (Ot — £ (0}
= (1+x)" =1+mx+@x2+...+m(m_l)”?;(!m_nﬂ)x”...,|x|<1.

-1
1 ax 1
i =[1+—| = (b0, az0
Particular case T [ b) b( » @ )

So the series can be deduced from above.
Application to approximate Calculations :
Examples :

1. Compute the approximate value of 4/83 accurate to six decimal places.

L

2 \/4
We note that %= #81+2 = 3(1+a)

2 |
By the expansion of (1+x)", taking 31 in place of x & 7 in place of m.

the expansion is

X l+;821+i(i")(;)ﬂi(i'?ﬁi'ﬂ(;]ﬁiu'll(%f]u'ﬂ(2J‘+"

31

162 2 (31)2 6 (8 1)3 | & this can be computed.

2. Compute the approximate value of cos5

As in case of sinx, Maclaurin's expansion for cosx, xe R, can be deduced as
follows :
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¥ oxt s

cosx=l-—+——"—+

21 4t ol

x=5= %6 & putting x = %6 & confining upto 2nd order terms,

2
cosx==1—x—::1—(1
2 36

cosOx | x*

= < —
R =1=3 =5

2

then

1 =Y
= — LJ etc.
41\ 36

3.6 Summary

In this unit, we have examined the concepts of derivative, differentiability and
differential. We have also studied the Rolle’s theorem, Lagrange’s Mean Value
Theorem, Cauchy’s Mean Value Theorem, Taylor’s Theorem. We have further
developed the Maclaurin’s infinite series to expansion of some elementary functions

such as & sinx, log(l+x), (1+x)”, etc. We have explained the Young’s form of

Taylor’s Theorem.

3.7

Exercise

1. Expand f(x)=sin’x—x%"" in positive integral powers of x upto the terms
of fourth order.

2. Expand f(x)=In(1+sinx) upto the fourth order terms.

h2

3. Show that sin{ct+ /) differs from since+ /% cose by not more than 3

4. Expand Incosx upto the term containing y?

5.1 p(x)=x" —2x* +x° —x* +2x -1, show that

p(x)=3(;7c—l)+3(x—1)4+(x—1)5
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Young’s form of Taylor's theorem :

(Note : This form of Taylor's theorem has very important & useful application
in the theory of maxima-minima.. )

If a function f be such that f (7} (a) exists and M is defined by the equation
2 n=1 Al

Flath)=fla)+hf'(a)+ 2= pria)+ S a)+

e
21 (n—1)! !

M — f"(a)ash—0
H

(In equivalent form, if we write the last term as h—l[ fr (a)+8:|, then ¢ -0 as
n!

h—0)
Proof : Existence of £ (”)(a) implies the existence of £, 7’ . f (1) i
N(a,8)=(a-8,a+d) for some >0

Let ¢>0 be any number First we take 7 >(. We define a function ¢ as
follows.

=1 #

EETAR

Here ¢(0)=¢’(0)=..=¢""'(0)=0 and ¢"(0)=¢>0

o(h)= £ (a)+hf"(a)+...+

I:f”(a)+8:|—f(a+h), 0<h<d

m!

Since ¢"(0)>0 & ¢! (0)=0, we see that there exists 8;,0< 8, <8, such that
i) (h)>0 when0 </ <9,

Again ¢" (M >0in 0<h <8, =0"2(4)>0,0<h<3,

Proceeding in this way, we get ¢(h)>0 when 0<h<§,

Thus when 0<h<§;, we get

n—1

£ @y 2] pr(apee] - flarh)>0 (1)

m!

F(a)+hf (a)+ ’;_zl Fray+. o+ (: 5
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Similarly, we can show that there exists 0<3, <8 such that for 0<h<3d,.

@ @+ @+ ] )] e <o)
: 2! (n-1)! n! :

Let n=min {8,,8,}, so for 0< k<, both (1) & (2) hold

Taking into account the given relation, we get

f("](a)—8<M<f(”)(a)+e when O< /<

= lim M = f"(a)

fi—=0+

Taking 4 < 0 arguing as before, we can get }l}in‘(l) M= f"(a)
%

Combining }111_1)1‘(1) M= f"(a).



Unit-4 [] Maxima-Minima of a Function

Structure
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4.2, Maxima-Minima of a function
4.3 First derivative test

4.4. Exercise-I

4.5 Appendix

3.6. Summary

3.7. Miscellanous Exercise

3.8. Further Readings

4.0 Objectives

This unit gives
e The concept of maxima-minima of a function
e Test of maxima and minima of a function using first derivation test
e Some miscellaneous exercise will also be introduced of the end of this unit

4.1 Introduction

The maxima and minima of a function, known collectively as extrema, are the
largest and smallest value of the function. In this chapter we have shown how
differentiation can be used to find the extrema values of a function.

4,2 Maxima-Minima of a function

Let f:7— R where I denote any interval c R .
f 1is said to have a relative maximum (relative minimum) at ¢ € [ if there exists

a neighbourhood V" of ¢ such that f(x)< f(c)(f(x)2 f(c)) for all x in ¥ N7 . If

f has either relative maximum or relative minimum at ¢, we say that f has a relative
extremum at c.

123
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Interior extremum Theorem :
Let ¢ be an interior point of interval [ at which ./ — R has a relative extremum.
If the derivative of f exists at ¢. then f’(c)=0

If possible, let f’(c)>0. Then there exists a neighbouhood V(< 1) of ¢ such
that

f(x)=7(e)

Olxel,x=
> (xeV,x=c)

So if xeV, x>c, f(x)-f(c)>0 in Vand if for xe¥V, x<c
F(x)=f(c)<0. As a result f(x)-f(c) does not maintain the same sign
througout the both-sided neighbourhood of ¢. As a result f has no extremum at ¢.

Thus we arrive at a contradiction. So f'(¢)# 0. As a result, f’(c)=0

Note : f may not be derivable at an extremum. For example f(x)=|x| has

minimum at x =0 but f’ does not exist at y =0

2. At a point of domain of /, f’{x)=0 does, not ensure the existence of extrenum
at that point,

For example, f(x)= M oneN

Note that f(x)=0 at x=0. But f(x)-f(0)>0 if x>0, f(x)-f(0})<0 if

x<0 ie f(x)—f(0) does not maintain the same sign in both sided neighbourhood
of 0.
Sufficient condition for maximum/minimum of function.

Let ¢ be an interior point of the domain / of f

Let (i) 7 (c) exist and f (")(c)?&O
i) f'(c)=r"(c)=..= [V (c)=0

Then if n 1s odd, f has no extremum at ¢.
But if # be even, f has an extremum at ¢ and f (¢) is maximum or minimum at

c according as f () (c)<0 or f M(c)>0
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Proof : Recalling Young's form of Taylor's theorem,

F(e )= ()= () /(e h

.. n
By (ii) f(c+h)—f(c)=;M (D)
Since M — f () (c) as h— 0, there exists §> (0 such that for 0<|h|< 3,

M and §®) (¢)have the same sign.

So (1) = when n is even, f(c+h)- f(c) and M have the same sign. If
) (¢)>0, M & hence f(c+h)— f(c)>0 which implies that f(c) is minimum.
If f*(c)<0, fle+h) - f(c)<0, meaning thereby that f(c) is maximum. If 7 be
odd, M <0 & as aresult, f(c+h)- f(c) changes sign with the change in the sign

of 4. So if # be odd, f(c)is not an extreme value.

4.3 First derivative test

Let f:[a,b] > R be continuous in [a,b]. Let g < ¢ <p and let £ be differentiable
in both (a,c)and (¢,b). Then

(i) if there exists §>0 such that f’(x})20 in {¢-8,c) and f’(x)}<0in
(¢,c+8), then f has a local maximum at c.

(i) if there exists §>0 such that f’/(x)<0 in {¢-8,¢c) and f'(x)20 in
(¢,c+8), then f has a local minimum at c.

(iiiy if #’(x) maintains the same sign in both (c-38,¢)&(c,c+38), then f has

no extremum at c.
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Proof : By hypothesis, f satisfies the conditions of L M V theorem in both
[c-8,c] & in [c,c+8]. So by LM V theorem, there exists &< (x,¢)(<=(c -3, ¢))
and ne(e,x)(c(c,¢+38)) for which

F(e)=s(x)=(c-x)S"(&) & f(x)=f(c)=(x=c)f"(

(i) given that f’(x)20 in (c-8,c) & sof(c)-f(x)20

and f/(x)<0 in (c,c+8)= f(x)-f(c)<0

so in both cases, f(c}2 f(x) in N{c,8)N[a.b]

= f has a local maximum at c.

(i) given that f/(x)<0 in (c-38,c) & so f(c)-f(x)<0

& f'(x)20 in (c,c+8)= f(x)-f(c)20 n (c,c+d)

In both cases, f(x)-f(c)20 or f(x)2 f(c) in N(c,8)N[a,b]

= f has a local minima at c.

(i) if f”(x)keeps same sign in both (c-8,c) & in (c,c+3), f(x)-f(c)
does not maintain the same sign & meaning thereby that f has no extremum at c.

Note : The conditions are sufficient but not necessary for the existence of
extremum.

1
2x% +x? sin—, x#0

Let f(x)= x’
0, x=0

Here xzsf(x)s3x2 & so f has a strict local minimum at y=(0 but

1

.1
fr(x)=4x+2x Sln;—COS;is not of constant sign in any deleted neighbourhood

Of x:O‘

Problems on Maxima-Minima :

1. Let f (x)=1—,f(x2) where the square root is to be taken positive. Test for

the existence of maximum/minimum
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I+x, ifx<0

Here f(x)={1_x’ g’foO}

In 0<x<0+8, f(x)-f(0)=1-x-1=-x<0& in

0-3<x<0, f(x)-f(0)=x<0

So in any case, f(x)- f(0)<0 meaning f has a maximum at x=0

f{x)-/10) 1-x-1

Note : "‘11)1& - =,\!L%1+T=_I<O=Rf (0)<o0
— £{0 -
& lim S0=7(0) lim M=1>0L.f’(0)>0
x—0- x-=0 x—0- X

Hence f’ does not exist at x=0)

2. P is any point on the curve y= f(x) & C is a fixed point not on the curve.

If the length PC is either maximum or minimum, show that the line PC is perpendicular
to the tangent at P.

Let P(xl,yl) be any point on curve y = f(x) & fixed point C be (OL, |3)

So PC= \/[(xl —(x)z"'(}’l —5)2] = \]I:(xl —0t)2+(f(x1)—|3)2]

d{PC -
Wm0 2 -2 1) =B (s)=0= £ l5) =0 m,
the slope of tangent at P.

f(x)-B

Slope of PC=m, =" and hence mym, = —1. Therefore for extremum

xl -
of PC, PC is perpendicular to the tangent at P,

3. A rectangle is inscribed in a right-angled triangle so as to have one angle
coincident with the right angle. Prove that its area is maximum when the opposite
corner bisects the hypotenuse.
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B (o, 9)

D M(r, s)

4 (p,0)

Cd X
ol ¢ \

We take x-axis and y-axis as along the base & the perpendicular line of the given
triangle, OCMD is the rectangle.

ABis L+2 -1 & M (r,s)is on AB=L 421
P 4 P 4

Area of rectangle = rs=r (1 — qu = f(r)
p

F0)=a 12 0= o s0)= T <o
P

f(r) is maximum when 7 =S =%. Hence M is midpoint of AB.

4. Find a point on a given straight line such that the sum of its distances from
two given points on the same side of the line is a minimum.

Y

A
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A(al,bl) and B(az,bz) are the given points. With reference to the given line as

x-axis & line perpendicular to it as y-axis.

Let f(x)= \/[(x—al)2+b12}+\/[(Clz—x)2+b22}

f/(x) — O — y= a1b2 +Cl2b1
b +b,
b b
Note that f” abta b, = f(x) is minimum when x= 2027 H0
by + b, b +b,

Consequently we conclude that when f (x) is minimum, the x-co-ordinate of
the point on the fixed line is same as the x-co-ordinate of the point which divides

AB internally in the ratio b, :b,.

5. A person wishes to divide a triangular field by a straight fence into two equal
parts. Show how it is to be done so that the fence may be of minimum length.

A
D
B I C
Let the fence be DE.
Length |[DC|=y, length |EC|=x
Length ‘DE‘ =z
So zZ=x*+y* —2xycos C ..(1)
1 11 ab
is. =xysinC=— —absinC = y=—
By hypothesis, 5 Y 27 y o .(2)

T
So z-=x"+ 2 —ab cos C = f(x) (say)




130 NSOU e CC-MT- 08

272 ab
f”(x):2+3a4b ﬁf”[,/az—bj>02> minimum for ¥ = >

L ab
So z is minimum for X=Yy = o
6. Find the dimensions of the largest rectangle which can be inscribed in an

isosceles triangle of base 10 cm & altitude 10 cm.

Y

N

4] (0, 10)

(h kS R (h, k)

BPOQC’X

(5,0)

As A ABC is isosceles (4B = AC), so median from 4 on BC is perpendicular

on BC. We take mid point O of BC. as origin, positive side of x-axis along OC &
positive side of y-axis along OA. Refering to the figure, area of rectangle

X
A =2hk (unit). AC is §+%=1 & 50 24k =10=k =10—2h

AsA=2h(10-2h)= f(h), f'(h)=20-4.2h

fi(m=0=h=="

=% (unit) & k=5 (unit)
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. . 5
f”(h)=—8<0. So A4 is maximum for h=§, k=5

These give the dimensions of the largest rectangle.

7. A cone is circumscribed about a sphere of radius R. Show that when the
volume of the cone is minimum, its altitude is 4R and its semivertical angle is

Let the radius of the base be x (unit) and the height of the cone be z (unit). By
property of elementary geometry,

A, O, D are collinear, BD=DC & AB=AC

2
From the figure sinf = R = ad = x? = Rz
Z—-R (x2+zz) z—2R
2 2
Volume ¥ =Lg 2, =T 2 = f(z)
3 3 z-2R

For extremum f’(z)=0 and = z=4R and f”(4R)>0

L ) 1 .
So V' is minimum for z=4R and so s1n9=§ ie. e:sin‘ll.

3
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1
8. A man in a boat ? miles from the bank wishes to reach a village that is 55

miles distant along the bank from the point nearest to him. He can walk
4 m.p.h. & row 2 m.p.h. Where should he land in order to reach the village in the
least time ?

Find also the time.

Let P be the position of the man & let he land at 7" Let M7 = x miles.

(4x2+3) 11
PT = &NT:E—x
Let ¢ be the total time to reach N then
(4x2+3) 11 x
(=1 4 = X (Say)
4 8 4 f( )

For extremum f’(x) =0=x= %

. 1
Here f”(%)> 0 & so ¢ 1s least for x = 5 Then 7= l% hours.

9. Prove that a conical tent of a given capacity will require the least amount of

canvas when the height is \/5 times the radius of the base.
Let the cone be of semi-vertical angle ¢ & radius of its base be 7 (unit). Then

volume J = %nﬁ coto. & surface area S = T cosec O

d ) 1 d.
&g gives —m| 312 cotor L — 13 coseco, | =0
do. 3 do

dr 3 cosec’ol r cosec?ol

=—>= 3 =
do 3r<coto 3coto
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=7| 27 cosec dr 2 cosec o, Cot o
Also o do

_— . dr das
utting the expression for we get
p 24 p do’ g do
2
Fcosec’o o
=1| 2F cosecOl. —————— —F“ cosecOLcot Ot
3cotot

s _

252 cosec o
_ 0 =
do

2

3 oot —F° cosecqt cota:;cotoc=\/§ or a:cot'lﬁ
ICOTOL

R~ o :
As o passes through the value cot V2, Jo. changes its sign from negative to

positive & by first derivative test, § 1s minimum for o= cot™' V2.
Then height = rcoto =2 =42 X radius of the base.

4,4 Exercise-I

22
by
1. Prove that the greatest acute angle at which the ellipse —+=5=1

2 42
. . . 1| ¢ -b
can be cut by a concentri¢ circle is tan
2ab
2. Show that the maximum & minimum values of »?=x%+3% where

1 1 2
ax® +2hxy+by? =1 are given by the quadratic (a - r_z) (b _r_z} =h

[Hints : x=rcos0, y=rsin9=>iz=acoszﬁ+hsin29+bsin29

sin28  cos20 1
—=0= = =

6 2h a—b _J[(a—b)2+4h2] =% (say) ]

3. Show that the maximum value of log in Q< x<oo IS l
X e
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4. Show that the height of the cylinder of maximum volume that can be inscribed

in a sphere of radius 'a' is 2%5.

5 If f(x)z(x_a)zn(x—b)zm”(m,ne N), test for the existence of extremum.

6. Find the altitude of the cone of maximum volume that can be inscribed in a
sphere of radius 'a'.
2 .2
7. A rectangle is drawn inside the ellipse a—2+?=1 having sides parallel to

axes of the ellipse. Show that when the rectangle is greatest, the diagonals of the
rectangle will be along the conjugate diameters of the ellipse.

8. Of all triangles with the given base 2a unit & given area a/ square unit, find
that with the least perimeter.

2 2
9. At which point on the ellipse %+f_8 =1 must a tangent be drawn such that

the area of the triangle formed by the tangent & the co-ordinate axes is the smallest ?
10. Investigate for extremum :

. —2x, x<0
® f(x)_{3x+5, X2 0
.. _ 2x% +3, x%0
(i1) f(x)—{ 4 xmo

4.5 Appendix

On monotonic functions :

In chapter II, we have just stated an important result on the continuity/discontinuity
of monotone functions without giving the proof or any other property. Here we are
going to discuss some properties of monotone functions

Theorem : Let f:[a,b] > R be monotonic increasing in [a,b0]& a<x. <b.

Then lim f(x) (or f(x—))and lim f(x) (or f(x,+)) both exist and

X —}XO

Fxo=)<f (%)< fx+)
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Proof : Let A= {f (x)‘a < x<x0}, Since f 1s increasing function, the set A is
bounded above by f(x ). By completeness axiom of R, the set 4 has the least upper
bound (Sup) C (say). Then C < f(x,).

We propose to show that f(x,—) exists & that it equals C.

Let £€>0 be given. As supA =C(', so corresponding to g, there exists &> 0

such that a<x,-8<x, & C-e< f(x,-8)<C.
Since f is monotonic increasing function, we have

Xo—8<x<x, > fx-8)< f(x)<C.

So C—e< f(x)<C for xy—8 <x<x,

= fxo-)=C< f(x)

Next let B= { f (x)|x0 <x< b|} since fis increasing function, the set B is bounded

below by f(x). So the set B has the greatest lower bound (inf /) d (say). Then

¥ (xo) <d,

We propose to show that f(x,+) exists & f(x,+)=d

Let €0 be given. As ¢ =inf B, corresponding to g, there exists &> 0 such
that xo <%, +0<b=d < f(x,+8)<d+¢

Since f is monotonic increasing function, we have

Xo<x<xo+3=d < f(x)S fxo+8)>d < fx)<d+e, xp<x<x+8

= f(x+) exists and f(x,+)=d 2 f(x,)

consequently f(x,—) < f(x,)< f(x,+4).

Remark : At the end points, f(a)< f{a+), F(b-)< f(b)

Note : (1) Let a<x<y<bh

Then f(x+)= iggbf(t)s inf f(z)

X<ty

f{y=)=sup f(1)= sup £(¢)

a<ty rfay
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As inf f(r)< sup f(r), so f(x+)< f(y-)

rersy rrey

Also if x,x,..,x, be n interior points of (a,b),a<x <x,<. . .<x,<bh, we

H
have Z[f(xk +)= /(% _)] < f-)-fla+)
k=1
Note 2. Monotonic functions can have only discontinuity of first kind or in other
words, monotonic functions can have no discontinuity of second kind.
Theorem : If j’:[a,b]—) [k be a monotonic, discontinuous function, the set E
of points of discontinuity of fis atmost enumerable.

Proof : With every point x of E, we associate a rational number r(x) such that
f(x—) < r(x) < f(x+)

since X, < x, = f{x+) < f(x, =) we see that 7(x;)=7(x,) if x, # x,. We have

thus established a one-one correspondence between the set E & a subset of the set
of rational numbers. The set of raticnal numbers is atmost enumerable. Hence the
result follows.

Note : 3. Jump of f at a point
We know that the jump of function fat a point ¢ is defined by

Jr(e)=J(e+0)=f(c-0)
Let f :[a,b]—) R be increasing function. Let us now consider jumps of f at

distinct points.
Let a< p<x<g<h. fbeing increasing,

f(a)$f(p—0)Sf(p+0)Sf(x)Sf(q—O)Sf(q+0)Sf(b)
= jr(p)+if(a)< f(B)-1(a)
= for distinct points py, p,...,p, in (a,b) we have

Jr (pl)+'-'jf (Pn) Sf(b)—f(a)

Hence if there are & distinct points where the jump of fis at least ¢, then

k<[ f(8)-f(a)]/t
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2. On second mean value theorem of differential calculus

Let f:[a,b] > R be such that
(i) f, f’ are continuous in [a,b]
(i) f”exists in (a,b)

Then there exists at least one point ¢ e{a,b) such that

J(@B)=fla)+(b-a)f(a)+

Proof : Let us construct F:[a,b] > R by

F(x)= f(x)+(b—x)f'(x)+A4(b- x)2 where the constant A is to be determined
from F(b)=F(a)= f(b)= f(a)+(b—a)f (a)+ A(b—a)’ (1)

Continuity of £, f’,(b—x)* = continuity of F in [a,5]

F'(x)= f'(x)= f'(x)+(b-x) f”(x)-A2(b-x) exists in (a,b) by hyp..(2)

By construction F(b) = F(a). So F satisfies all the conditions of Rolle's theorem
in [a,b]

Therefore, by Rolle's theorem, there exists ¢ e(a,b) for which 7’(c)=0

=(b-c)f”(c)-24(b-c)=0

= d=27"(c)

Putting in (1) f(b)=f(a)+(b—a)f’(a)+@f”(c)

Note this result is in fact Taylor’s theorem for # = 2.
3. On convex function

Definition : Let f:/ — R where / is some open interval — R . If for pair of

points x,x, €/ and any number «, ot,(=0), 01, +a, =1, the inequality
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S oux + o)) S0 f (x)+ 06, £(x5)..(1) holds, then £ is said to be a convex
function or convex downward. If only < holds in (1), fis stricly convex on L. If the
opposite equality holds £ (0x; +06,x, )2 0 f (3 )+ &, f (x, ) for any pair x;,x, as
stated above, f is concave or convex upward on 1.

Remarks : Taking x =ox +0,%, when o)+, =1 we have

XN

al= R 052‘
X =X X2 =X

& hence f(x)—f(xl) < f(xz)—f(x) for x <x<x,..(2)
b

X = Xl XZ -
Theorem : A necessary & sufficient condition for f:7 — R that is derivable

on { to be convex (downward) on / is that its derivative f’to be increasing on /. (A

strictly increasing f” corresponds to strictly convex function)

Proof : Let the convex function f:7 — R be differentiable on 1.
In (2) taking x tends first to x, & then to x,, we have

(e LIt

X2 =X
Applying L M V theorem to f in [xl_, xz], there exists %e(xl, xz) such that
Fle)=7(x)=00-x)rE)
So f'(x)< f'(§)< f'(x;) & so the derivative of f is monotonic.

For a strictly convex function. f'(x )< f’(§)<f'(x,) & f’is strictly

monotonic.

Converse : LM V theorem = f(x)— f(x)=(x—x) f*(&,) for some &, & (x;, x)
& fx)=f(x)=(x;=x)f'(§,) for some &, &(x,x,)
If f ’(?;1) <f (?;2) then (2) follows & fis convex function.
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Note : Let f:/— R be twice differentiable on the open interval /{c R)
Then £ is convex on [ if f”(x)>0 throughout /.

Theorem : Let f be convex on the open interval 7{c R). Then

flx+h)-f(x) flx+h)—-f(x)
h h

& lim

=0+

(i) the limits ;linol both exist for each
10—

xel
(i1} £ 1s continuous on [,

Proof : As f is convex on I, by (2) for x; < x, < x;(alle])

ACENACY PRACIEAC

=
Xy — X X3 —X

we take x; =x, x, =x+h, x3=x+h, where O0<h <h,

Then f(x+h;31)—f(x) < f(x+h;2)—f(x)

soif F(h)=

, h>0, then F(h) increases in some interval (0,5)

flx+h)=f(x)
h

so lim F(h) exists. Similarly lim F (%) exists

fr—=0+ h—0—

lim {f(x+h)—f(x)}= lim {f(x+h})l_f(x)h}=0

h—0+ =0+
Similarly Jim {f(x+h)- f(x)}=0. Hence f is continuous function on I.
1—0+

Notes : The result may fail if / be not open.

xz, 0<x<l
Xi=
re={ %

¥
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Examples :

(1) Let f(x)=x",x>0,0eR

>0, fora<Ooro>1

£ ()= ofo-1)x"7? {

<0, for0<oxl
Soif w<Ooro>1 fis strictly convex & for 0< <1, f1s concave function
(2) sinxis strictly convex when 2km<x<(2k+1)n & concave when

(2k-1)m<x<2kn.

(3) a*{a>0,a#1) is convex for 0<a<l, a>1
4. On Periodic function :

A function f R — R is said to be periodic on R if there exists a number p
such that f(x+ p)= f(x) for all x. The least positive value of p for which
S(x+p)=f(x) is known as the period of f or the primitive period of f.
For example, sinx, cosx are periodic functions of period 21 .

Result : (1) Let f:R — R be continuous and periodic with period 1. Then (i)
£ 15 bounded above & below and achieves its maximum & minimum values. (it} there

exists a real number x. such thatf(xo+1t)=f (xo).

Proof : Let £, be the restriction of fto [0,2]. As f(x+1)= f(x) forall xeR.
the ranges of f & f, are same. f is bounded & attains its maxima and minima there

in. As fis continuous & periodic on R . So fis bounded above & below and achieves
its maximum and minimum. Let f attain its maximum & minimum at p and ¢
respectively.

Hence f(p+7)-f(p)<0& f(g+®)-flg)20

If the equality holds in the first case, p is desired x,

If the equality holds in the second case, g is desired x,

Otherwise : Let g(x)= f(x+n)- f(x),xeR

So g is continuous & g(p)g(q)<0. Applying Bolzano's theorem on continuous
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function to g on [ p,¢]{or on [g, p]), there exists x, e R for which g(xo)= 0 ie
S x +m)=f(x,).

Result 2. Let f:R — R be continuous and periodic & let T(> 0) be the period.
Then f is uniformly continuous on R

Proof : Continuity of fin [-T, 27| implies fis uniformly continuous in [-T, 27].
For arbitrary ¢ (, there exists 5(8) >0 such that for any pair of points
x,ye[-T,2T] satisfying |x—y|< 8, we have ‘f (x)—f(y)|< e (1)

We take 0<3<T

Let x,y,eR satisfying |x—)|<

There exists peZ such that w7 <x<(n+1)T & so x-nT€[0,T] &
y—-nT e[-T,2T].

Note that [(x—nT)—(y—nT)|=fx-y <= |f(x)-F(y)|<e

= Uniform Continuity of f on R

Result 3. Let /R — R be a periodic function. Show that if lim f(x) exists,

X—poo
then f is a constant function.

Proof : Let lim f(x)=/(cR) and T(>0) be the period of £ We propose to

X—poo

show that f{(x)=1for all x.

If not and if possible, let there exist ge R such that f{a)=17.

-1
Let 0<8<%. As lim f(x)=1, so corresponding to above g, there

X—ro
exists (GeR such that
‘f(x)—!‘<e whenever x> G ...(1)

By Archemedean property of real numbers, there exists #e€lN such that
nl'>G-a so nf+a>G. (2)
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By (1) and (2) |f(a+nT)—!|<e=>|f(a)—l|<e (as T is the period of f)
= 10e <& but this is absurd as £>0

So f(x)=1 for all x & as a result f is constant function

Example : E}l;losmx does not exist

4.6 Summary

In this unit we have defined the term extrema of a function and shown how the
differentiation can be used to find the maxima & minima. We have also studied the
first derivative test for extrema and formulated a sufficient condition for extrema of a
function.

4.7 Miscellanous Exercise

I Let f g:§—>R(S<R) and p be an accumulation point of S.
Let lim f(x)=/(eR) and lim g(x)=m(eR)
x—=p xX=p
Test for the existence of
(i) limmax{f,g} (i) limmin{f, g}
xX—=p x—=p

2. Using the results (i) {(1+l) } converges to ¢ and (i1) for x > | there exists
n
1)

LY
nelN such that < x<n+1, show that ign(“‘;) -

3. Let f:[a,o0)—> R . Then show that lim f(x} exists if and only if for every

X—oe

€> 0, there exists X > a such that
|f(x)—f(y)‘<8 for all x,y>X

4. Let neN and 3> 0. Show that there exists unique y >0 such that " =}
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x* —2x, when x is rational

5. Let f(x)={

3x —6, when x is irrational

If acR, examine whether lim f(x) exists.
X—=a

6. Prove or disprove : If f(x):{n when x is rational 0 [0’1]

1-x, when x isirrational

then g{x)= f(x)f(1-x) is continuous everywhere.

x2n

7. Let f(x)= lim

== X

- , x&[-2,2]. Test for the continuity of f in [-2,2].
T+1 '

8. A function f:[0,1] > R is continuous on [0,1] and f assumes only rational

values on [0, 1]. Prove that f is constant.
9. f:[0,2] > R be continuous on [0,2] and f(0)= f(2) prove there exists a
point ¢ in [0, 1] such that f(c)= f{c+1)

o
10. Prove that cosx=x’ for some x € (0, 5)

11. Let f:R — R be defined by

0, if x=0 or x isirrational
LS, if x=L£ where peZ,gqeN and ged(p,q)=1

q q

flx)=

show that £ is differentiable at 0 and f/(0)=0

f(x)

<|¢f)
X

(Hints : For x#0, 0<

12. f:R—R satisfies the condition | f(x)— f(y)[<|x-3|" when ot>1 for all

x,y€ R . Show that fis constant.
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13. Prove that the equation (x-— 1)3 +(x— 2)3 +(x - 3)3 +(x _4)3 =0 has only
one real root.

14. Prove that between any two real roots of ¢*sinx+1=0, there is at least one
real root of tanx+1=0.

15. Given that f:[a,b]—> R is continuous on [a,b] & f”(x) exists for all

xe(a,b) If a<c<b and f(a)= f(b)=0, prove that there exists a point & < (a,b)
such that f(c)= %(c—a)(c—b) 77(8)

16. If a<ec<b, f” exists in (a,b),f and f’ are continuous at the end points

a and b, show that there exists ¢ e(a,b) such that

#le) =L MDHZT O Lo oye) 17

(Hints : By second mean value theorem,

f(a)=f(c)+(a—c)f’(c)+%(a—c)2f”(<‘;) for some &e(a,c) &

r ]' Fid
Fb)=fle)+(b-c}f (c)+5(b—c)2f () for some ne(c,b)
For ex. 15, take f(a)=0= f(b))
17. Let f: [a,b] — R be continuous positive valued function, differentiable in

(a,b). Show that there exists ¢ e(«,b) such that

f (b) _ e(b—a],f'(c];‘f(c]

(Hints : Applying L M V theorem to F(x)=Inf(x) in [a, b] )
18. Let f” exist in [0,a], @>0.If f{0)=0 and 0< x<a, show that there

exists &e(0,x) such that f’(ﬂ—@ =%lf”(§)



NSOU « CC-MT- 08 145

X
x) is increasing in the above interval if f”(x)>0 & is

Hence show that

decreasing if f”(x)<0 for all x.

[Consider ¢:[0,a] » R defined by ¢(x)=—f(x)+xf’(x)+%Ax2 where

19. Let f:[a,b] >R be continuous in [¢,b] and be derivable in (a,b). If
F2(b)- f*(a)=b*-a, show that the equation f’(x).f(x)=x has at least one
root in (a,b).

20. An open tank with a square base must have a capacity of v liters, what size
will it be if the least amount of tin is used.

1
21. On the curve V= 12 find a point at which the tangent forms with the

x-axis the greatest (in absolute value) angle ?
22. Test the following function for increase or decrease :

1 1
1o 13

Y 5 3
23. What right triangle of given perimeter 2p has the greatest area ?
2 .2

24. p is the length of perpendicular from the centre of the ellipse a—2+?=1
to the normal at a variable point on the ellipse. Show that the greatest value of p is
a-b.

25. Find the relative extremum points of f defined by
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First Course in Real Analysis — S. K. Mukherjee (Academic Publishers)
(second edition)

Mathematical Analysis — Shantinarayan (S. Chand & Co.)



Unit-5 [0 Miscellaneous Examples & Exercises

Structure
5.0. Objectives
5.1. Unit-1
5.2. Unit-2
5.3 Unit-3

5.4 Summary

5.0 Objectives

The main objective of the unit is to prevent various Examples and exercises of

unit 1, 2 and 3. Also the solutions of each problem have also been given.

5.1 Unit-1

Problems :

1
1 Let f(x)=x—2, x#0,xeR

(a) Determine f(E) where E={xeR:1<x<2}
(b) Determine f~'(G) where G={xeR:1<x<4}

2. Let g(x)=x2 and f(x)=x+2 for xe R, and let h be the composite function
h=gof.

(a) Find A(E) where E={xeR:0<x<1}

(b) Find /7' (G) where G={reR:0<x<4]}

3. Show that if f:4— B and £, F are subsets of A4 then
FEUF)= f(E)US(F) and f(ENF)c f(E)NS(F)

147
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4. Show that if f.A—>B and G, H are subsets of B, then
FHGUH)= G s (H) and f7(GNH)= 7 (G)N S (H)

5. Show that the function f defined by f(x)= j , xR is a bijection of
x°+1

R onto {y:-1<y<1}.
6. For a,beR with a<b, find an explicit bijection of 4={x:a<x<b} onto
B= { y:0<y< 1}
7. Let f:A— B and g:B— C be functions.
(a) Show that if g- f is injective, f 1s injective
(b) Show that if go f is surjective, g is surjective.
8. Let f, g be functions such that (go ) (x) = x for all xe D(f) and (fog)
() = y for all yeD(g). Prove that g = f'.

9. Suppose that fand g are real-valued functions with common domain D(cC R).
Assume that f and g are bounded.

Then (a) if f{x)<g(x)VxeD, then sup f(D)})< sup g (D)

(b) if f(x)<g(y)Vx,yeD, thensup f(D)< inf g (D)

10. Let X be a nonempty set, and let f and g be defined on X and bounded. Show
that

sup{ 7 (x)+g(x):xeX}<sup{f(x):xeX}+sup{g(x) xeX)

and inf {7 (x):xe X}+inf {g(x):xe X} <inf {f (x)+ g(x):xe X}

11. Let X=Y={xeR:0<x<l1} Define #: X x¥ >R by h(x,y)=2x+y

(a) For each xeX, find f(x)=sup{h(x,y):ye¥}, then find
inf { £ (x):xe X}
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(b) For each ye¥, find g(y)=inf{h(x,y):xeX} then find

sup{g(»): ye¥}. Compare with the result found in part (a).
Solutions of problems :
2. h=gof :R — R 1s defined by

h{x)=(g°f)(x)
=g(/(»)
:g(x+2)
:(x+2)2
=¥’ +4x+4

(a) 0<x<1

—>2<x+2<3

=4<(x+2)° <9

so h(E)={yeR:4<y<9}

(b) 0<(x+2)'<4

=-2<(x+2)<2
=-4<x<0
so h'(G)={xeR: -4<x<0}
where G={xeR:0<x<4}

5. For x,yeR, let f(x)=f(»)

= X 7
\./1+Jur2 \/1+y2
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x2 y2

1+x2 1+y2

=2 +x%y7 = )P + 1%y’

= (x+y)(x-y)=0

x _ ___ Y
Then (x+y)(x-y)=0.But x+y=0 fortheny = x & \/(l+x3) N \/(1+y3)

does not stand.

If possible let x#y

as \!1+x2, \/1+ y2

both are positive and x, y both are not zero.
So we arrive at a contradiction.

». f is one to one
-l<y<l
=0<y” <1

=0<1-y* <1

Y Y
For x=—2— ,f(x)= \/l—yz _\/I—yz =

= _J)
J: 1
1+ 2
1—y2 -y

~f Ro{yeR:-1<y<l} is onto. Thus f is a bijecton of R onto
{yeR:-1<y<1}.

and f_l(x)=

2,—1<x<1
1-x
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7. Let for a, beA so that
Sla)=1(b)=g(f(@)=2(/(2))
=(gof)a)=(g-f)(b) (As g=-f is injective)

=a=b
Thus f is injective
Let yeC. As gof:A—C is surjective, there exists x€ A such that
(gofXx)=y or g(f(x))=y

= corresponding toy of C, 3 f(x)e B= g is surjective.
8. Let yeD(g), f(g(»))=(7-g)(y)=v
~ f:D(f)> D(g) is bijective and f(g(x})=xVxeD(g)
therefore, £~ D(g)— D(f) is given by £~ (x)= g(x)¥re D(g)
Thus, g= 57!
9. (a) f(x)<g(x)¥xeD so, f(x)<g(x)<sup{g(x)}.xeD
Let 3 =sup f(D), U =sup g (D)
~f(x)SuvxeD

If possible let A > choose ¢= k%u

Then there is x € D st. f{x)>A-¢

o)

_2A-A+p
2

A+

2
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£ > ZEEH_ A

= f(x)>n contradiction. Therefore, sup f(D)<supg(D)
(b) f(x)<g(y)Vx,yeD Fix ay,eD. Then f(x)<g(y,)VxeD
Now make ). arbitrary. If possible let Inf g (D) < sup f (D)

Take £ supf(D);mfg (D) o6

Then there exists a, b D such that
sup f(D)-e< f(a) and g(b)<inf g(D)+e

:supf(D)—SUpf(D)z_infg(D)<f(a)

- sup f (D)-zl-infg(D) .

f(a)(l) and

2 (b)< inf g(D)+sup f(D)

> (2)

But f(a)<g(b)..3)

From (1), {2), (3) we have

sup f (D)+inf g(D) B inf g(D)+sup f(D)
2 2

which 1s a contradiction.
Some solved problems on Limits,

1. Show that for f(x)=[x], lim [x] does not exist.
x—

In an arbitrary neighbourhood of 0, say N(0,1)

flx)=-1 if -1<x<0
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Let us consider two sequences {x,} and {y,} in N(0,1) defined by

L =_—1,neN. Then the sequences {xn}n and {}’ﬁ}". converge to 0.

X, ==
"o+l n+l

But the sequence {f (xn)} is {0, 0, 0,...} This converges to 0, and the sequence
{f(}’n)hI is {-1, -1, —1,...}.  This converges to —1.

- lim[x] does not exist.
x—0

2. Iim sgn x does not exist.
x—=0

Let f(x):sgnx_
Then f(x)=1 for x>0
=0 for x=0
=-1 for x<0

Domain D of f is k. 0 is an accumulation point of D. Let us consider two
-1

1
sequences {x,,}n in R and {yn}n in R defined by x}g:;? }’n=;, nelN.

Then lim xn =0=lim yn

H=—en H—pe

Also, f(x,)=1& f{y,)=-1VneN

Therefore, lim f (x”)= I, im f ( yﬂ) = —1which are different
Fi=—3on

Fi=—3on

~lim sgnx does not exist.
x—0

3. Show that the following hmits do not exist :

.1
(a) chll}%x—z(x > 0)

(b) 113}) (x +sgn (x))
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4. Use either €—0 definition of limit or the sequential criterion for limits, to
establish.

by 1
a) lim——=—
@) ll+x 2

2

LoX
(b) chl_%H—O

5. f(x)=sgnx Examine if xlim+ f(*) and lim S (x) exist.

=0 x—=0-

Here the domain D of f is R

Let D; =D[1(0,00) and D, = D[1(~o0,0). 0 is an accumulation point of both
D and D,
f(x)=1V xeD, and f(x)=—1 VYxebD,

Therefore lim f{x)=1 and lim f(x)=-1
x—0+ x—0—

1

6. f(x)=ex.

Examine if lim £(x) and lim f(x) exist.
x—0+ x—0-

Here the domain D of fis R\{0}. Let D, = D(0,) and D, = D(\(~0, 0).
0 is an accumulation point of D, and D,. f is unbounded on N{(0)( D, for any

neighbourhood N (0) of 0. Therefore lim f (x) does not exist.

1

We have €' >¢>0V¢>0. Take t=—l,x<0 we have e x>—l>0, and
b X

1
this imples 0<e *<—xVx<0

By Sandwich Theorem, lim f(x) =0

x—0—

7. Show that lim f(x) =ee, where f(ﬂ:i2
x—0 X
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In every neighbouhood of 0. f is unbounded above. Let us choose G > 0. Then

f(x)>G ¥ x satisfying x <L xz0

Nk

That is, f(x) > G ¥V x € N’ (0,3) where 3=

5-

Therefore lim f{x)=co
x—0

8. Examine if lim tanx exists.

x
x=I
2

Let f(x)=tanx. The domain D of f is R—{(2n+l)% : neZ}=IE{$

b

T

n

2

acumulation point of both D, and D, In T . v < g, fis monotonic decreasing
2

function unbounded below. Therefore, lim f(x) =—-o.
—I4

™ . .. . .
In 0< x <E’ J 1s a monotonic increasing function unbounded above. Therefore,

lim f(x)=o We conclude that lim f(x) does not exist.

LIS LT
Ay )

9. Using Cauchy’s principle, prove that lim cosx does not exist.

K=o
. . 1
Let f(x)=cosx, xR Here the domain of f1s R . Let us choose £= 2 In

order that lim f{x) should exist, it is necessary that there exists a positive G such

K=o
that | f(a)- f(b)| <% for every pair of points @, b>G.

For a given positive real number . We can find a natural number X such that
2Kkn>G
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Let a=(2k+)m, b=2kn. Then a,b> G and f(a)=-1, f(b)=1. Therefore,
| flay—f (b)| # € for some pair of points «,b > (. This shows that cauchy's condition

for the existence of lim cosx 1s not satisfied. Therefore lim cosx does not exist.

= K=o

1
10. Prove that lim{(1+x)* =¢.
x—0

We have lim(1+l)x=e. Let y=l. As x =00, y—=0+
x x

X—oo

and x = —ee, y—0-

L7
Then e= lim(1+3) = lim (1+ ) *.. (1)
X y—=0+

=0

1
e=lim (1+l)x = lim (1+y)..2)
X p—=0—

Y=o
Ll 2
+y) ) =
From (1) & (2), }_12%( yy’r=e
Thus, lim(1+x)"* = e
x—0

1. Use sequential criterion for limits to show that following limits do not exist.

ey 1
(i) limcos —

x—0 X
(ll) lim xl+smx
X—>6D

2. f(x)=x, xe@
=2-x, xeR\Q

Show that (1) lim f(x) = 1, (i) lim f(x) does not exist, if c#1.
y—l xX—=e
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3. Show that the following limits do not exist

(1) lim 1 =
¥20 4 o

iy tim 2t
x—0 2x—|x|

4. Evaluate the limits

@ Jim ST oy T

(i) lim x[l], lim x 1]
x—0+ X —0- [ X

lim sin x im [ sin x
T ’

(m)x—>0+ X x—)O—_ X
5. Evaluate the limits

2
+3x

() lim 5——
1
e X2 4 x 41

sin x

(i) lim
¥—=w X+ COSX

(i) lim (¥x+1-3/x)

X0

® tnlb[3)

5.2 Unit-2

1. A function f : R — Ris continuouson R and f(x+y)= f(x)+f(y}Vx, yeR.
If f()=k, prove that f(x)=4kx ¥V x<RR. Also show that f is uniformly continuous

on R .
Take x=y =0, We have f(0)=2f(0)= f(0)=0...(%)
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Take y=-x, f(x)+ f(-x)=0= f(-x)=—f(x)......(ii)

Let x be a positive integer.

Then f(x) = f(+1+...+1)
= f(D+ f(H+.... + f(1) (x¥ times)
=x f()

= kxif x bea positive integer.... (iii)

Let x be a negative integer,

let x=-y, y>0
S =fEpy=—f)by it) = —ky
= f(x) = kx, if x be negative integer .
So, f(x)=kx if xisa negative integer...._.(iv)

From (1), (i) and (iv) if follows that f(x)=#4 xif x is an integer... {v)
— p L E -
let xe@, x==—, ‘say’ peZ, geN
q

flgx)=f(p)=hp by (v)

flge)= f(x+.....+x)
=)+ f()+....+f(x) [g times]
=q f(x)

Therefore g f(x)=k p
of, f(x)=k—p=k X
q

So, f(x)=#kx if x 15 a rational number ..... (vi)
Let oo R\Q. Let us consider a sequence of rational points {x,}, converging

to o Since f is continuous at o, lim f(x,)= f(a).
H—¥co
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But ,,l,i_lgf(x”)z:f!i—lgh”’ since x € 0

As limkx, = ko, it follows that f(a)=/% o

So, f(x)=Fkx if x is an irrational number ........ (vi1)

From (v), (vi), {(vil} f(x)=kx VxelR

Let £>0

and let x; x, be any two points in R . Choose & = |k|8 T Such & depends only
' +

on g.

Then |f (x)-f (x2)| = |k||xl —x2| < €. This prove that f is uniformly continuous
on K.

2. A function f is defined on R by f(x) = cosl x=0

E

0, x=0

Prove that f is not continuous at 0.

. 1
Let us consider a sequence {x,} where x,= py— neN. Then
™0

limx, =0, f(x,)=1 ¥neN. Therefore, lim f(x,)}=1.

We have a sequence {x,}, in R that converges to 0 but lim f(x,)# f(0),
proving that f is not continuous at 0.

3. lim 1+\/;=1

x—0+

Let f(x)=1+Vx, x20, g (x)=+x, x20
Let A={xeR . x20}, f(A)cINg)

(8o ) () =g(f(0) = VI+x, x20, 0c 4 and lim F(x)=1

le D(g) and g is continuous at 1.
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Therefore rli_)n(;l+\ll+\/;=£i_l)l‘(l) (gof) (x) =g =1

4, f(x)=lsinl, x>0
X X

linol F(x)=eo, lil‘l(;l Sf{x)=—9o_ fis discontinuous at 0, 0 is a point of infinite
y—0+ y=0-
oscillatory discontinuity,
5. f(xy=x-[x] 0 < x <2

fx)=x, 0 < x <1

=x-1 1gx<?

Here lim f(x)=1, lil‘{l Ff(x)=0, f(1)=0. fis discontinuous at 1. 1 is a point

x=1- x—=1+

of jump discontinuity.

Total jump of fat 1= f(1+0)— f(1-0)=0-1=-1

Problems on Chapter - 2

1. Determine the points of continuity of the functions

(a) g (x)=x[x]

(b) k(x)= [l} ¥20

x
2. f:R—>Rbe continuous on R and let $={xcR: f(x)=0} be the “zero

set” of f. If {xn} is in § and x=limx,, show that xeS§.

3. Suppose that f(r)=0 V¥V reQ. Prove that f(x)=0V xeR
4. Define g:R—>R by g(x)=2x for xe@Q, g(x)=x+3, xeR\Q. Find

points at which g is continuous.
5. Let g:R— R satisfy the relation g (x+y)=g(x)g())V x,yeR . Show
that if g is continuous at x =0, then g is continuous at every point of R . Also if we

have g(a)=0 for some ae R, then g(x)=0 V xeR. Also show that if g(x)=0

for any x, then g(x)=¢" where a>0,a#1.
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6. Let f be defined by f(x)= sinl, x#0 and f (0)=0. Prove that f has the
x

intermediate value property on [-1,1].

7. Let f be defined on an interval / and suppose that f is one-to-one on /.
(a) Give an example to show that f may not be monotone on /.

(b) Give an example to show that f may not be monotone on any subinterval
of I

{c) Suppose that f is continuous on /. Prove that f is monotone on /.

(d) Suppose that f has the intermediate value property on /. Prove that f is
monotone on /.

8. Find the point of discontinuity of the functions.
(1) f(x):[sinx], xelR
i) f(x)=(-DM, xeR

9. Examine the nature of discontinuity of f at 0.

(i) f(x)=%, >0
=0 x=0

sinx

(i) f()==7=, x0

=0 x=0

(i) f(x)= cosl, x=0
R

=0 x=0

1.1
; X)j=— sin—, x#0
(ivy J(¥)=— sin—.
=0, x=0
10. Show that £ is piecewise continuous on the interval /

(1) f(x)= [x] I= [0, 3]
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(i) f(x)=sgnx, I = [—2, 2]

() f(x)=x —[x], I= [0, 3]
11. Prove that the following functions are uniformly continuous on the indicated
interval.

(i) f(x)=+x on [1, <)

Gy S @) =$, xR

(i) f(x)=x sinl, x20
X

=0,

x=0 on [—1, 1]
(iv) f(x)=tanxon[a,b]
hi —£<a<b<E
where =2 >

12. f:[a,b]—>R and g:[a, 5] >R be continuous on [a, b] and let
flay< gla), f(b)>g(b) Show that there exists a point ce(a, ) such that
fle) =gle).

5.3 Unit-3

Some solved problems on Chapter - 3
1. Let f:[0,3] >R be defined by

flx)=x, 0< x <1

=2-x, 1< x<?2

=y— xz, 2 £ x < 3. Find the derivative function f’ and its domain.
f’(x)=1 for xe(O, 1)

=-2x for xe(l, 2)
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=1-2x for xe(2, 3)

fim LSO Xy Rf7(0)=1
x—0+ x—=0 =04+ X

Hence f is differentiable at 0 and f’(0)=1

S fM L x=
I TR

— 2 —
fim LSO M =— 2, Rf'(1)=-2 so LF') = Rf"()

=1+ x—1 =+ x-1

Hence f is not differentiable at 1.

— — 2_ —
im L2/ 220 ) ()=
x—=2— x—2 x—2— X— x—2—
Lf'(2)=-4
_ 2
TG et A O T BT
X2+ x—2 =2+ x-2 x—2+

Rf’(z) =-3 so Lf'(D= R (2)

Hence f is not differentiable at 2.
- f(3

jim L)

x—3— x—3 x—3— x—3 —3 xr—23

=lim-(x+2)= 5= Lf'(3)=-5

x=32—

Hence f is differentiable at 3 and f’(3)=-5
The derived function f”is defined by
fx)=1, 0<x<l1

=-2x, l<x<2

=1-2x, 2<x<3
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2. f(x)=x" xe[0,50). fis strictly increasing and continuous on [0, ).
Let 7=[0, c). Then f(7}=[0, o)

The inverse function g defined by g{y)=», y &[0, ) is continuous in [0, )
f is differentiable on [0,) and f’(x)=2x, x€[0, )

f'(x)#20 on (0, »). Let I, =(0,00). Then f{f})=(0, co).

Hence g’(y) exists V ye(0, «) and g’(y)= ’1 I

Sfx) 2x 2g(y)

=%/—, (0, )

2Vy
3. A function /R — R is defined by f(0)=0 and f(x)=0 if xeR\Q

. x=L where peZ, geN and ged(p,¢)=1

1

q q
Show that £ is not differentiable at 0.
limM= limm_ Let (])(x): f(x)

x—0 x-=0 x—0 X X

Jx) =

. Let {X,,}n be the sequence of

: : 1
rational points converging to O where x, = l neN. Then lim ¢(x,)=lim n.—=1
H H—po H—po F£3

Let {}’,,},, be a sequence of irrational points converging to 0.

linolo ¢(y;:)=A2nM=O, since f(y,)=0 YneN,

Therefore, lin% ¢(x) does not exist, since for two sequences {x,,}n and {,V,,},,
X—

both converging to 0, the sequences {¢'(X,,)}” and {¢'(yﬁ)}n converge to two different
limits.

o f 1s not differentiable at 0.
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4. Let f:[-1,1] >R be defined by f(x)=0,xe[-1,0], f(x)=1,xe(0,1]

Does there exist a function g such that g’(x)= f(x), xe[-1,1]?

If possible, let there exist a function g;[—l, 1]—) R such that

g'(x)= f(x), xe[-11].

Then g is differentiable on [-1,1] and g’(x)=0,xe[-1,0] and =1, x&(0,1]

Since g is differentiable on [-1,1] and g’(-1)= g’(1}, by Darboux' s theorem
g’ must assume every real number lying between g’(—1) and g’(1), i. e. between
0 and 1 on [-1,1]. But this is not so and therefore g does not exist.

5. Show that functions tan~!x = f(x),— 0 < x < o, i3 uniformly continuous there
in and f’(x) is also so.
Let x, y be any pair of points in (—e,0). By LMV theorem, 3¢ e (x, y) such that

1
S -fx)=(-x1E= |f(y)—f(x)|=|y—x|1+§2 <ly-x| Let £>0 be any

number. So |f(y)— f(x)|<|y—x|<e whenever |[y—x|<8,8=¢.

= f 1is uniformly continuous on (—oo,oo).

Again |f7(x)= f'(»)|=|x-y[S7(&) for some &< (x,y) (by LMV theorem)
o=
&+

1+ & 2[¢| 1 .
Note : That szél:?ng.Also ]+§2—1

consequently, |f(x)— f'(»)|<|x—y|<e whenever |x—y|<38

= f* is uniformly continuous on (—oe,c0}.



166 NSOU « CC-MT-08

Indeterminate form

In the process of examining the existence of limit of functions in R and in its
determination we are very often faced with limits of following forms :

0 o

=, —,0Xo0 co—00 ()° 00° 17

0’ e
These forms are generally known as ‘Indeterminate forms’. Usually all the above

. 0 o
forms can be reformulated to give rise to the form 2 =

French mathematician G. F. L. Hopital (1661-1704) gave a method for computing
such limits (provided they exist).

I’ Hopital’s Rule,
Result-1 : Let f,g:[a,b] > R be both continuous in [a, 5], differentiable in
(a,b) such that f(a)=0=g(a) & g(x)#0, g'(x)20ina<x <b . Then,

()i f,E ;—I(E R}, then llm f{ ;
(i) if 11 g,( ;—“ then xl_m ggg =

S

Proof of (i) _llm (x)_z: corresponding to arbitrary £>0,38>0,

0<d<b—-a, such that

)
7o

By hypothesis, Cauchy’s M. V. theorem is applicable to f& g in[a,x] where

< ¢ whenevera<x<a+9d (D)

a<x<a+d 3E a<&, <ux, such that

fO-fa)_ G O _FE) ,
glx)-gla) g (é) ° e ZE.) -(2)

=,f(__

< g wheneverg< x <a+9d

(1) & (2)

J(x)
= g(x)
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Proof of (ii) : llm A )—m=> corresponding to any G > 0, as large as we

g'x)
please, 38,0<8 <bh—a, such that

C)]
g'x)

Again Cauchy’s M V theorem is applicable to £, gin [a, x], g<x<a+d.

> (G whenevera <x <a+9 . (1)

so dn,, @ <mn, <x, such that

f)-fl@)_ fiin) S ) ,
g-g@  gm)  gx gm) @

JACIN
g(x)

By (1) & (2), G whenever a<x<a+d

SO _
= Mg gx)

Simple Ilustrations :

(1) lims'iﬂ(%)=li COSX _ fim 2\/;(:05—0

=3 \/; x=0+ E_-i"? x=3H
) liml—cosx(_)_l sinx _ 1
xr—) x2 0 \:—}0 2x 2 I

(3) Evaluate llm[ ~if(x-a)...(x-a ):I where . 's are positive rationals.

The limit is of form co—co.

We take x=%.sox—>c~o<:)t—>0+

l—sfl—an(l-ab. (l-at
The limit is lim gJ-a)l-an..( an)(%)

=0 {

) -4 ffi=an) (-ap)
=1m

t—0 1
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. n|l-at 1-af l—at
=lim =

t—0 1

where /()= g[(1-af)(-a)..(1-ap)]

. N |
So the required limit is ;(CI, +a,+..+a,).

1

(4) Evaluate lim (e +x).
The limit is of form 1™

Let y= (e*' + x)% ,s0 logy =%log(ex +x).

Then llmlogy— 1lmw(g)

x= X O

1{e* +1
= lim (x )= 2

x=0 ¢ +x
So limy=é*
Note : Standard limits like lim S0 [im 080+ e =1 x"—a"

=0 X =0 X K= X isa X—d

can not be evaluated by L. Hopital’s rule.

The reason is that if you apply the above rule to find lgg% , then you are

differentiating sinx wrt. x & in order to do the same, you are using the limit

. sinx
lim—=
=0 X

=1
Result I ; Let £, g are differentiable in [a, 5], }LIR f(x)=0c0= leIllJr g(x), g(x)#0,
g'(x)#0 in a<x<b, then

G if llmf( )—!(ER) thenxli)lng ; /

i LG 16 _
) i B g = e M et
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Proof : Let a<x<c<b,
Applying C M V theorem to f & g in [a, ¢], FE (a,c) such that

_8()

I-fe_ fQ_ [ _SfE e
g0-g0) " g g @’ 1— ﬁc; - ()

X

Let Q< g <1 be any number. Then

£,

38, 0 <8 <b—a such that [
g'(x)

<ga<x<a+d

we can write %=1+6, where |8, <7 <«1

|_8©
Keeping chosen ¢ fixed. lim 2() =1
ping S _1©
J(x)
Choosing x nearer to a.
gEc; eif|1)<1
g(x
=143, where
1-f©) ¥ |l|lf|”>1
Jf(x)

Then () =>f( ) = (14+8,)(148,)=1+8,+15,+38,

= %—I < 3e in above neighbourhood of ‘@’
= im <& -y
x=at g(x)
m L) : . .
@iy | m (%) == corresponding to arbitrary large positive number G, 3 3,

S

_ ——~>G,a<x<a+d
0< & <b—a, such that 2% _
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Choosing ce(q,a+d)

_8©) |_£©
gx)y ,_1 g(x)
l_mﬂ G asl_mal
J{x) f(x)

Then (1) = fEx; >G|1

Simple Illustrations:

(1) lim l“"(m) limL=0

r—yan

(2) lim(e™ ¥’ )(3) =_1im2—_’f(f)= lim = =0

X—poo o0

M(i)= lim €08°X (g)

(3) ‘}Lm+ tanx

oo x—>%+x_E 0
2
= lim =sinZx _ —sinn=0
A

(4) hm x™(0°)

x=0+

) — SN i =14 inx % —co
let y=x"*. So }LIE logy }lmsmx log x (0 )

1
) logx -0 ) -
= lim —2% (=} [im — %
x¥20+ COSEC X =0+ —COSecy cotx
in2x
= [jm —20=Y O0=limy=e"=1
=0+ COSXY —XSINY x— 04

® imfy) e
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tanx
let y= (%) = logy=tanx log(%)

= lim log y = lim tan x (—log x) (0X o)

1

. —=logx{oo ) - .oosincx 4. .

= lim 28X (22} = lim 4,,=11mS =limsin2x= 0

=0+ COtX \eoo ¥=0+  —cosecTx o+ X =0+
Iim v=¢°=1

SO x—>0+y )

[ L

| Gt ta
i 3

(6) 1w

. a's are positive rationals.

let y be the expression mentioned above

1ol 1
af +ai+..+ar
log =

lim logy =1lim

0
X—pe L 0

1

1 N
n 1l 5 e -1
1 1 ';|:alx loge 9 +"'+a;: loge an:|(_2)
. ar+ .. .+a?
=lim 1 — 2

K=bes

-1 *

x

1 1
lim | —L—— [al-“ logea]+”..+a;logean]
| T T
Tlap+otar
=log (aa....a,)

Pop—en

So. lmy=aa..a,

171
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Problems on Indeterminate form : Evaluate the limits in (1) to (5) :

() _!im(xlogsinz x)

@) lim (sinx);_2

= X

3) lim>—2

x—0 4x — 3.\'

. 1
tim (- L}
(5) xﬂll(x—l Inx
(6) Determine the constants a, b, ¢ such that

lim x(a+bcosir)+csmx _ L‘
x=) X 60

1 1/
{1+ Cx ) _ . (1-2Cx
(7 It LI-IE(I—Cx) =4, find L‘$(1+2Cx) ‘

5.4 Summary

In this unit, we have given various problems and solution of the units 1, 2

and 3.



Unit-6 [J Limit and continuity for function of
two variables

Structure

6.0. Objectives

6.1. Introduction

6.2. Preliminaries

6.3 Limit and continuity for function of two variables
6.4. Continuity at a point

6.5 Neighbourhood Properties

6.6. Summary

6.0 Objectives

This unit gives

¢ Some preliminary notion of the distance in R, diameter of a set, open and
closed sts in B2

e Convergence of sequence in R2.
e® The concept of limit and continuity of two variable function.

e Continuity of a function in R?.

6.1 Introduction

This unit concerned with the calculus of functions whose domains are subsets of

R?. Such functions are frequently called by the name “functions of several variables”.
The concept extends the idea of a function of a real variable to several variables. There
are so many applications of this several variables’ functions in geometry, applied
mathematics, engineering, natural sciences and economics.

173
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6.2 Preliminaries

[1] The set R* and the distance on it
R> denotes the set of ordered 2-tuples (x!, x2) (or ordered pairs) of real

numbers x' € B for i = 1, 2, where the notion of distance between the points

X = (xllvxlz) and x, = (x;, x;%)

is defined by d (x,,X,) = Z{(x.‘ —x;)z}} (1)

The function d . defined by (1), obeys the following properties :
(1) d(x, x;) = 0 (1) dx), x,) =0 <=>x =x, (i) d (x;, x,) = dx,, x;)
(v} d(x), x3) < dx|, xp) + dlx,, x3).

[2] Diameter of a set :

The diameter of a set £ c R” is the quantity
d (F) = Sup d(x,, x,)

4 5 E
[3] Bounded set in R :
A set E — R* is bounded if its diameter is finite.
[4] Open and closed sets in R* :
Definition (1) : For 8 > 0, the set B(a, 8) = {x eR*|d(a,x) < 5} is called the
ball with centre @ € R* of radius & or the 3-neighbourhood of the point ‘@’ in 2.

In particular, if (a, ) € R* and & > 0, the set

{(x, VeR | Jx-ay +(y-by < 8}

is called an open disc of radius ¢ with centre at (@, b) & is denoted by
Ma, b, 0).

The set N'{(a,b),8)=N((a,b),5)-{(a,b)}is called the deleted -neigh-
bourhood of (a, b), denoted by

N'((a, b),5) as mentioned above.
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The set M c R’ is a neighbourhood of (@, ») if and only if there exists
8 > 0 such that

N{(a,b),8)cM

Definition (2) : Aset G (< R*)is open in R? if every point x € G, there exists
a ball B(x, &) c G.

In other words, a set G (C R?) is said to be open if it is a neighbourhood of
each of its points.

Examples : (i) R? is an open set (ii) Void set is open set (iii) A ball B(a, b)
is an open set in R*

Definition (3) : The set /' < R* is closed in R* if its complement

G = R*\F is open in R*.

Definition (4) : Let ECR’. A point x is interior point of £ if some
neighbourhood of it is contained in £.

On the otherhand, x 1s exterior point of £ if it is an interior point of the
complement of £ in R?.

x is boundary point of £ if it is neither an interior point of £ nor an exterior
point of F.

Definition (5) : A point a €[} is a limit point (accumulation point) of EC R?
if for any neighbourhood M) of ‘@’ the intersection £MN(a) is an infinite set.

The union of set £ and all its limit points in R?, is the closure of £ in R,

denoted by E .
Results : We state the following results without proof :
(1) Intersection of any two open discs 15 an open set.

(2) The union of any number of open subsets of R* is open.

"

(3) The intersection QGa of a finite number of open sets in R? is an open set.

(4) The intersection O £ of the sets of any system {F, :oc€ A} of closed sets
F, in R’is a closed set in R*. ( ~ : Index set).

(5) The union of finite number of closed sets in R* is a closed set in R?.
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(6) Every bounded infinite set S of points in a plane has at least one
accumulation point.

Sequence of points : Convergence

Let us consider infinite sequence of points P (x, y,) in the plane. The
sequence is bounded if a disc can be found containing all the points P, i.e. if there

POl< M for all

is a point (J and a number Af such that the distance
nelN.

1 3 -2y’
Examples : The sequence P, = {(-1)" +;, " L P = {3(?] } are bounded

but the sequence {(7*,77 )}n is not bounded. The sequence {P,} converges to a point

Q (or, im P, = Q) if the sequence of distances {R?_Q}" converges to zero. For every

g> 0, there exists positive integer m such that P,’s lie in the ¢ -neighbourhood of
Q for all n > m.

The sequence of points {(x,, y,)}, converges to (a, b) if and only if the

sequences {x,}, &{y,} converge to a and b respectively (Co-ordinatewise

convergence).

6.3 Limit and continuity for function of two variables

Definition :

u(x, y) 1s a function of independent variables x and y whenever some law f
assigns a unique value of u, the dependent variable to each pair of values
(x, ) belonging to a certain specified set, the domain of the function. A function u(x,
y) thus defines a mapping of a set of points in the xy-plane, the domain of f, on to
a certain set of points on the w#-axis, the range of f.

Geometrically, a function of two variables represents a surface.
Examples :

X
[1] Domain of #(x,y)=Sin '§+\/Eis 5, US, where

Sl={(x,y)eR3|—3$x$O,yS0}&83={(x,y)€R3|0$x$3,yZO}
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[2] Domain of #(x,y)= \/ 1—x° +\/1— y” is the square formed by the segments of

the lines x = £1,y =11, including its sides |x|<L|y|<1.

[3] Domain of u(x,y)= \/(xﬁ -4)+ \/(4—y3) is the two strips x>2,-2<y<2
and x<-2,-2<y<2.

[4] Domain of wu(x,y)=./ysinx is the strips 2nlI1<x<(2n+DII,y=0 and
Cr+DIT < x < (2n+2)I1, y <0 (where » is integer).

[5] Domain of u(x, y) = In (x? + y) is that part of the plane located above the
parabola y = —x2.
Definition (Limit of function of two variables)

Let f:.S—R when §cR-. Let (¢, ) be an accumulation point of S. We say
that ( l)il)‘lgl . f(x,3)=HKe R)if for any number ¢ 0, there exists & > 0 such that
Ry S 2 M=)

| fix, y) - 1< & whenever (v, y)e N'((a,0),8)"S.

This limit if exists is known as simultaneous limit or double limit.

ixvis{ab

Sequential approach : lim )f (x,y)=I(eR) if and only if for every
sequence of points (x,, ¥,) = {(a, b), we have lim f(x,, v, )=1(eIR).

These two definitions (e —& approach & sequential approach) are equivalent.
Examples :

. Xy
1
[1] (x.,v)lg(lo,m X4y’

[l 1) & (Z 1)
The sequences ' ) - "both approach to (0, 0)

1 1Y Unm 1 2 1Y) 2 _
fl=—1= T &S| = — |==. These two are different.
non 2/ 2 nn 5

So the limit does not exist.
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[2] ixvimto0 /(xz N yz)

Refer to polar co-ordinates x =rcos9, y =rsin8. Then,

Xy

J+ )

1
We note that | f(x,))—0 Er(=

= lr sin 20

S €
Jx” +}")}< 5 whenever

1
2
0</(x**+1)<d& 3= % £>0 is arbitrary number.

So, (x_}!)if(lomf (x,)=0.

Theorem : (Necessary condition for the existence of double limit)

Let £ $ = R where S ¢ R* and (@, b) be an accumulation point of S.

If (x,}!)il‘l)(la,b)f (x,y)=L(e R), then fix, ¢ (x)) > L as x— a, where @ is a real
valued function of one variable x such that {x, ¢(x)€S

xeD, and @(x)>basx—a.

Note that in a plane (x, y) may approach to (a, b) through infinitely many
paths, strictly within the domain. The genesis of the above theorem is that limit ¢
is independent of all such paths leading to (a, 5).

Proof : Given lim fix, y) = L(e R), Let £ > 0 be any number,

(x, ¥} = (a, b)
Corresponding to €, there exists 6 > 0 such that

| f(x,y)-L|<e whenever O0<{x-al|<d 0<|y-5b[<8 (1)

Again lim ¢(x) = b, corresponding to above 8, there exists N> 0

such that |@(x)-b|<d whenever 0 < [x—a|<n (2)

Let p=min{d, n}.
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Hence by (1) and (2), we have | f(x, ¢(x)) - L|<gwherever 0 < |x —a| < p
Consequently, im f(x,@(x))=1

Remarks : If there be two functions ¢,(x)& ¢,(x) such that

lim £ (x, @,(x)) # lim f (x,05(x))

where (x, ¢,(x)) & (x, @,(x))e Sfor each xe D, (i=12) & as x — a,

¢,(x)—>b(=12), then Ilim f(x,y) does not exist.

(x3)>ab)

x4y
X-=y

Examples : f(x,y)= { JXEY

0, x=y
Let (x, ) — (0, 0) along the path x — y = mx®. Then

+y 1+(1-mx?y 2 2 i
= ——asx— 0,— g different for different m.
x—y m m m

So, lim f(x,y) does not exist.

T a0
Repeated limits :

Let /: § > R where $ € R2and (& 5) be an accumulation point of §.

Let ‘_.lxi_l};l)f (x,y) exist, then it is function of y, say ¢(y).

Let img(y)exist & =A(e R), then Imlim f(x,y) =2 (1)
y e

Let lirrblf (x,y)exist & it is then function of x, say w(x).

Let Ll_l};l ¥(X)exist & = (e R), then lim li_rg Ffx,y)y=n ..(2)

(1) and (2) are known as ‘Repeated limits’

So questions arise regarding the existence of Repeated limits, whether their
existence ensure the existence of double limit & conversely etc.

In this connection, let us consider first the following examples :
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1 1
(1) Let f(x, y) = {xSf'n—+ySr'n—, xy =0
y X
Let € > 0 be any number,

| e, -0 XSf?Il-i- ySr'nl I<|x|+|y|<e whenever
y x

&
0<|x-0]<8,0<y-0|<d, 06 correspond to g, say 3

So.  Im  f(x¥)exists & is O

? (x =00

R | . . .
But lrlilUJSm; does not exist, so neither lim lim f(x,y)nor limlim f(x,y)
J =0 v—0 Y= x—
exists.

This example illustrates that only the existence of double limit at a point does
not ensure the existence of repeated limits.

_Sinx+Sin 2y
tan2x+tan y

@) f(xp)

Keeping y fixed, let x — 0, then we take y — 0.

lim lim f(r,y)=1

x=0 y=0 2

On the other hand, first keeping x fixed, let y — 0. Then we take x — 0.
N _1
We get lim lim f(x,y)=3

So both repeated limits exist though they are unequal.

For consideration of double limt, let (x, y) — (0, 0) along y = x.

95i 3x  x 2
sinx+sin2y  sinx+sin2x Sin > 0082 cos X cos 2x

; . 3x  3x
tan2x+tan y tan2x4tanx 2sm7 0057
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X
COS— COSX COs2x
= 2 —lasx—0.

3x
Cos—
2

Next we consider the path y = 2x.

2sin o cos 3 cos2x
sin2x+sin2y _sinx+sin4x _ 2 2

tan2x +tan y 2tan2x 2sin2x
sins—x
=l. 2 .‘L.icos?'—x.cost. L =—asx—0
2 5% ‘ginx 2 2 cosx 4
2

So the double limit does not exist.

So existence of repeated limits & existence of double limit.

Also if g(xy) = ,,J_C':)yg , x> +37 #0,we note that both the repeated limits

exist and are equal but the double limit does not exist.

So a question arises | whether there is any relation between the existence of
repeated limits and that of double limit. In this connection, the following theorem is
relevant :

Theorem : Let the double limit (x_}!)ifl(a_b)f(x,y) exist and be equal to A(eR).

Let the imit lim f(x, y) exist for each fixed value of y in the neighbourhood

of b and like wise let the Limit l}l_n};f (x, ¥} exist for each fixed value of x in the

neighbourhood of ‘a’.

Then lim lirr!} f(x,y)=A4= ling lim f(x,y).
x=ta y—3i y=b x=a

Proof : Let (lim) F(x,y)=F(y) (by hypothesis, it exists)

Let € > 0 be given let 0 < |y — b < §,
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Corresponding to €, there exists 6, > 0 such that
£
| £, y)=F(y) |<E ..{1) for all x satisfying

O<x—al<d, Also 0<|y-bl<d,. (1)

Also due to the existence of double limit, corresponding to above &€, there
exists 8, > 0 such that

£
| f(x,y)-A |<E ----- (1) for all x,y satisfying 0 <|x—a|<8,,0qy—b|<d, .(2)

Let n=min{0,0,0.}

So |F(y)—A|£|f(x,y)—F(y)|+|f(x,y)—A|<%+% whenever
0<]y—bl<n. So, lin;lF(y):A.
=

Consequently lim lim f(x,y)=4

b x—a

Similarly for the other part.

(x

Ilustration : Let J(x.y)= _—})ga(x?.y) #(1,1)
1-2xy+y

Examine the existence of ( him  f(x,»)

230110

If possible, let the double limit exist & be equal to A

For y#1limf(r,y) =02 15 limlim f(x,y)=1
x—l ]_2y+y vl x—l
. 1-xy 1-x .. .
x=11lim f(x, y)= =——=limlim f(x,y)=0
For x=1lim f(x,y) ox) 2 o m lim £ Cx, )

So by above theorem ; the double limit does not exist.
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6.4 Continuity at a point

Let f: S >R where §cR? and let (¢, b) € S.
(a) If (a, b) be an accumulation point of S &

lim  f(x,y)=f(a,b)

(5 y)ah)
(b) Or If (a, b) be an isolated point of S,

then f 15 continuous at the point (a, b)

If for given € > O there exists 6 > 0 such that

| f(x,y)— f(a,b)|<& wherever \[[(x—a)’ +(y—b)’]<d or
(x,yye N({{a,5)5) S,

then f is continuous at (@, b)
Note : Let g(x) = f (x, ). Then by above, |g(x)—g(a)|<e wherever
| x—a|d= g{x)is continuous at ‘a’.
Similarly if #(y)= f(a,y), then it is continuous at y = b.
But continuity of g(x) at a & that of #(y) at » |= continuity of f (x, y) at (@, b)
0,if xpy=0
Let f(x,y) = {1, if xy=0

Here g(x) = fix, 0) = 1 for all xeR& A y)=f(0,y)=1 for all
yeR= g(x), h(y) are continuous at x = 0, y = O respectively.

If possible, let f(x,y) be continuous at (0, 0). Then for € :% there exists

& >0 such that | f(x,v)— f(0,0)|<e whenever {x,y)e N((0,0)0)nR

5 3
(53

Thus f is not continuous at (0, 0),

=

1
<e=|1|< 8[= EJ - Absurd.

xylog(x” +y ). x* +y* =0

Examples : (1) f(x,y)= 2 2
0, x+y =0
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For 0 < x*+y° <1, log(x’ +y*) <0 & so we have

|/ (x,3)= £(0,0)| = =|xy]log(x* + y*) < —%(xz +y*)log(x* + ) [AM 2 GM |
If we have x* + )7 = t, by L Hospital’s rule, ng:ntlogr =0

So given g > 0, there exists § > (0 such that

|[tlogz -0 <2& whenever 0<7<3§

= |(x2 + ¥ ) log(x® + y3)| <2ewhenever Q<f<§

For n=min{1,8}, we have for 0<x*+y” <n,

|f(x,y)—f(0,0)| <€= f is continuous at (0, 0).

0,if (x,3)=(2y, ») }

Let f(x,y)= {exp{_|x_2y|/(x3 —4xy+ 4y (60 =2y, ¥)

we note that

lx=2y 1
¥ —dxy+4y”  |x—2y|

-1

Let 0<g <1 and g =

log
|x—2y|£|x|+2|y|<8—'+£ whenever |x—0|<ﬂa|y—0|<e—]:>|x‘2yl<81
4 4 4 4
= |x—2y|f(x2—4xy+4y2)}>i=> q—|x—2y| <—L=loge
g, (F—dxy+4y") g

N exp{ﬂ} e

X’ —dxy+4y°

=|f(x.3)- £(0,0)| <& whenever |[x—0|<8,|y-0|<5,5=5).
Thus f i1s continuous at (0, 0).
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(3) Let f and g be two functions of one variable which are continuous on

[a=0,a+8,] & [-8,,b+8,] respectively, 8, >0,8, >0.
If #(x,y)=max {f(x), g(»)}, then h is continuous on

[a-8,,a+8,;b-5, b+3,]

Here, h(x) =3[ ./(x)+g()+|£(x)~g(1)]

Let (x, ¥y) €[a-6,,a+6,;b6-5,,b+5,]
Let £> (0 be any number
As fis continuous at x', so corresponding to above €, there exists d,

0<8<38,, such that [f(x)- f(x")

continuous at y', corresponding to above € there exists 9,

£ :
<3 whenever |x—x/|<3. As g is

0<8& <8, such that le() -2 <% whenever |y—y|<8".

Let n=min{§, 6'}

So [ /()= f(x)]| <2 whenever [x~x]<n&g()-g(y)| <= whenever
y=y]<n

Consequently [{f(x)+g(»)}-{f(x)+g(y)}|

< |f(x)—f(x')|+|g(y)—g(y')| <g whenever |x—x'| <, |y—y'| <M

Therefore fix) + g(y) and f(x) — g(y) are continuous at (x', "), | Fxy—g( y)|

continuous at (x', )"). So their sum, difference and scalar multiple are
continuous. Hence /(x,)) is continuous at (x', }').

o, B
Xy
— X, * 0»0
i) (x,y)#(0,0)
0. (x3)=(0.0}

@) Let flx,y)=

Examine for the continuity of f{x, y) at (0, 0).
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Let (x, y) — (0, 0) along the line y = mx.

xayB _ mB o2

- - ﬂ'x
“+xy+y l+m+m

m
If a+f=2 weget —— & if o+ <2, the limit does not exist
1+m+m”

So a+BE2
Let us consider the case o +p>2
We put x=rcos6, y=rsin6, Then,

x*yP _ o2 (cos8)*(sin8)”
Cxy+y 1+sinBcosH

For any 6, % <1+sinBcosB < 2.

wep-2 (€08 ©)*(sin 0)°|

. < 2P0 2 5 0asr— 0
1+sinH¢osO

Then, |f(x,_}’)| =

provided oo + 3 > 2.

Therefore, when o + > 2, | floeon—f (0,0)| < g whenever

[x-0|<8,|y-0|<5,5=8(e) = fis continuous at (0, 0) only when ot + > 2.

(ax+by)sin=,y #0 (a,b € R)
Let fix,y) = b
0,y=0
Test for continuity of f(x, y) at (0, 0)
Let € > 0 be any number

| £ (x,0)= £(0,0)|= < e + By| < [a| || + (]|

(ax+by)sin{—0
}?

la|.€ |5 €
2(la|+ D 2p|+ D)

whenever
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(6)

(M

g
|x—a|<6,— |y—b|<62—m

_&
2(|a]+1)
If d=min{3 ,3J,}, we have
|7 (x,)— 7(0,0)| <& whenever [x—0|<8&,|y—0|<&;8=35(s)
So f is continuous at (0, 0).

¥ —2y*
Let f{x, y) = T}“};,xz +}’2 #0

0. X7+ y7=0
Test for the continuity of f{x, y) at (0, 0).

Put x = rcosb, y =rsinb

X =2yt L 24
=r"cos"6-2r°sin" 0. Let £ be any number

)

X’ +y

|f(3c_,y)—f(0_,0)|51"4+2r2 <& whenever x*+ 7 <5&3=<E

= f1s continuous at (0, 0).

3_ 5
Sy =12Y lyiag
=

0. 5T +y=0

236'3 - 3 3 .
Put x = rcos®, y =rsin®, Then Ty};= 2rcos’®—rsin’@.

|f(x,y) - f(0, 0)| <2r+r <e whenever r«<§= g(a > 0is arbitrary)
2

= f(x,y) is continuous at (0,0).

6.5

Neighbourhood Properties

)

If lm  f(x,y)=AeR), there exists a deleted neighbourhood of (p, g) in

{x. 30— p.g)

which f is bounded.
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We note that there exists § ~ ( such that

1
‘f(x.» ADRAES > whenever (x, y) € N'((p,9).9)ND,

1
=|f(x.») Slf(x,y)—7«~|+|7u|<5+|7u| for all (x,y)e N'(p,q).8)n D,
= f(x,y) is bounded in N'((p,q), S)ODf

If (x,yl)i_,‘}lp_q)f (x,y)=% AeR—{0}, there exists a deleted

neighbourhood of (p, ¢) in which f(x, y) does not vanish.
There exists >0 such that

-2 m h Je N D
|G ) =A< whenever (x.y)e N'((p.@) M) Dy

A
=<l l< %+ 7y ) N ((p.y ) D,

LHS of the last inequality implies that f{x,y) does not vanish in N'
(.0 M) ~D,

Let f be defined and continuous in S (¢ R*). If at two points AA(x', ) and
AM" (x", y") of §, AM'M" lies entirely in §, the function takes values of distinct
signs, say f(x', ') <0, Ax", y") > 0, then there exists a point M,, (x;, ;) in the
domain at which fix;, y,) = 0.

Let x=x"+#{(x"-x", y=y'+1(y"-y") where 0<r<l.
Jxyy=F+Hx"=x"), y'+i(y"—y) = F ().

By hypothesis F(¢#) is continuous in [0, 1]. F(0) F(1) = f(x', ') f(x", ")
1e., F0) F(1) <0 By Bolzano’s theorem on continuous function for a function
of one variable, there exists a point #, <(0,1) for which F{z#,) = 0 => there is
a point (x,, y,) such that f(x,, y,) = O where

X=X+, x"-X)L Yy, =y +1,0"-y)

Some important results :

We state the following results without proof

Results (1) : If functions ¢,(P) (f=12) are continuous at the point
P'(#/, ') in S(cR”) and the functions f(M), M(x,, x,), be
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continuous at the corresponding point M'(x ", x,") where x,'=o¢/(%"%,"
x,'=¢,(4"1,") then the composite function

u= flo1, 1), 0,0, %)= f(0,(p), 0.(p)) is continuous at p'

Result (2) : If f{x, y) is defined & continuous in a bounded closed domain

S(c R*), then f is bounded above and below in $ and f attains its bounds in
S.

Example : Let 7(x, y) be defined in the square S ={(x,y)|x|<1]y|<1}

fOoy) =2 x4yt 20
X +y
0,x'+y':0

Examine for continuity and boundedness of f on §.
It is evident that f 1s continuous in x for every y and £ is continuous in y for
every x. To discuss double limit, let (x, y) — (0, 0) along y = m3.

mx*

m
Then f(x,y)=———FF== — —>m asx —>0
X+mx l+m'x

So double limit ( l}iE(q O)f (x,v) does not exist & fis not continuous at {0, 0).
%y 0,

If possible, let f be bounded. Then there would exist M > 0 such that

|f e )| <M forall (x, y) e8.

1 | 1 1 | 1
For x— y———, , = / —+ —|=2M >M
d 2NM f[Z\fM ZV’M] 4M (16M‘ 16M‘]
This indicates f(x, ») is not bounded on S.

6.6 Summary

In this chapter we have introduced the concept of limit and continuity for
function of two variable as a generalization of one variable. We also have examined
condition for the existence of double limit. We have studied repeated limits and
continuity at a point with some examples. We have further developed the
neighbourhood properties.
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Structure

7.0. Objectives

7.1. Introduction

7.2. Partial Differentiation

7.3 Directional Derivative
7.4, Differentiability at a point
7.5 Total Differential

7.6 Summary

7.7 Exercises

7.8 Further Readings

7.0 Objectives

This unit gives

e The concept of partial differentiation
e The derivative of a function along some direction
e The concept of total differential

e Chain rule and some application

7.1 Introduction

Suppose that f is a function of more than one variable. For instance,

z=f(x,y)=x"+xy+y". The graph of this function defines a surface in Euclidean

space. To every point on this surface, there are an infinite number of tangent lines.
Partial differentiation 1is the act of choosing one of these lines and finding its slope.
Usually, the lines of most interest are those that are parallel to the xy-plane, and those
that are parallel to the yz-plane.

190
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7.2 Partial Differentiation

U21 Letf: S — R where S (c R2) be an open set
Let (a, b) be an interior point of S.
(l) If llITl f(x’ b)_f(a‘b)
Xl x—a
order partial derivative of f w.rt. x at (@, b). This is denoted by f(a b)

exists as a finite, definite number, it i1s called first

Jf
org | (a,b)

fx+h, y})] ~fx)) . if limit exists

We can also write f (x, y) =lim

Ti—0

(i) If lim fla.y)- f(a.b) exists as a finite, definite number, it is called first

y—h }r —_ b

order partial derivative of f wrt. y at (a b). This 1s denoted by

1.a,b) org—;(a, 5)

, if hmit exists.

£,4x,) = lim [yt k}: — 7 (%)

Geometrical significance :
Let Z = f(x, y) represent the surface S. Let f have first order partial derivatives
wrt. x and y at each point of its domain. If (@ 5) is such a point,
let ¢ = f(a, b). So (a, b, ¢) is a point on the surface S.
To find /. at (a, b), we hold y = constant = b, The equation Z = f(x, y),
y = b defines the curve in which the plane y = b cuts the surface §. f {a, b)
is the slope of the curve (1) relative to the x-direction at the point (a,b,¢).
Similarly, the plane x = a cuts the surface S in a curve Z = f(x,y), x = a
(2) whose slope relative to the y-direction at {a, b, ¢) 15 f] {a, b).



192 NSOU « CC-MT-08

.1 .1
xsin—+ysin—, xy =0
x y
inl #0,y=0
Examples : (1) Let £(x, y)=+ xsmx,x o

ysinl, x=0y=0
Y

0, x=0=y

.1 ) ) .
As lim sin does not exist, so neither £, nor f, exists at (0, 0),
Note that f is continuous at (0, 0). For g > (0 any number

<|x|+|y] <& whenever

|/ (x,y)— £(0,0)| =

. 1
xsin—+ ysin——10
x Y

|x—0|<6,|y—0|<6&6=%

@) Let f(x,y)=(x+y|+x+p), (x,y)eR’
Examine for the existence of /, and £, at (0, 0)

We first note that f can be defined only when & > 0, (x, y) € K~
lim f(0+h» 0)_f(09 0) = lim zkhk—l

B0+ h B0+

exist only when £ > 1.

If 0 < & < 1, the limit does not exist.
If £ > 1, the limit is zero & if £ = 1, the limit 1s 2.
lim FO+h 0)-f(0,0) ~ lim 0-0 ~0

B0 h h—i- h

So, for existence of £, (0, 0), we must have Rf_ (0, 0) = L £(0, 0) = 0 & that
is possible only when &£ > 1.

Similarly, for existence ofj;, at (0, 0), we must have & > 1,
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AL R
cos| ————= [, x +y >0
(3) Let fix,y)= 2 x°+y°

0, x*+y* =0

Examine for the continuity of f at (0, 0) & existence of £, /, at (0, 0).
To examine for continuity of f at (0, 0), let us opt for sequential approach.

11
-, —: —=>(0,0
Note that {n n}" (0,0)

f[l,l]=cos[5o]=1 & so 1imf(l,l]¢f(o, 0)
2 Pt AN

n n

= f1s not continuous at (0, 0).

lim ZOTR =700 lim%= 0= £.(0,0)=0

B0 h [

fim £ %0+ %)= /(0,0 =1im0k;0= 0= £,(0,0)=0

K= k k=0

So note that though first order p. d.” s exist at (0, 0), £ is not continuous at
(0, 0). This nature of Ax, y) is a major departure / change from the property
of function of one variable. Here existence of first order p.d.’s at a point does
not ensure the continuity of flx, y) at that point.
Sufficient condition for continuity at a point :

A sufficient condition for the continuity of fx, v) at {a, b) (as stated above)
is that one of the first order p.d’s exist at that point and the other p.d. exists
and 1s bounded in the neighbourhood of that point.

Proof : Let f{a, b) exist and f} be bounded in a neighbourhood of (a, b), say
M(a, b), 0).

We choose #, kso that (a+ i, b+ k), (a+ h, b) e N ((a, b), 0)

Ra+h b+k)y—fa by=f(a+h btk)—fath b) + flath, b) — fla b) (1)

f(a+h,b;—f(a,b) - f(a.b)

As f(a, b) exists, so lhing

— (f(a—i_h» b)_(f(aa b) _

if P fla,by=n(#), then n—0ash—0
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= fla+h b)- f(a,b) :h{fx(a,b)+n} where n—>0ash— 0

Let f(a+h y)y=g(y) so fla+h b+k)— fla+h by=g(b+k)-g(bh)
As f, exists in N((a,b),8), g is derivable in [5, b + k] or in [ + & 5].
By Lagrange’s mean value theorem, there exists at least one

8 e (0,1) such that g(b + k) — g(b) = &f, (a + h, b + 6k)

= fla+hb+k)- fla+hb)y=kf (a+h, b+6k)

Recalling (1), f(a+h,b+k)—f(a,b)=h{fx(a, b)+n}+kﬁ,(a+h,b+9k)
where n—>0as/h— 0

Hence  lim ){f(a+h, b+k)— f(a,b)} =0(f, being bounded in

(k)= (0.0

N(a,6,3)ND,

= lim fla+hb+k)=f(a,b) & fis continuous at (a, )

{hE (0,00

Remark, Another set of sufficient condition for continuity of f(x, y) at (&, #)
is that f, exists & is bounded in neighbourhood of (g, ») & f} exists at {a, b).

Illustration :

Let f:R*— R be defined by

,,ys ~, '+ #0
SO, y)=qx"+)°
0 , x*+y'=0

Here lim

fi—=0

f(0+h,0;—f(0,0) _ limoh;oz 0= £.(0,0)=0

Ti—0

 F0,0+K)-£(0,0) . k-0 B
Also lim P —%1_1}37—1=>f}.(0,0)—1
Here f.(x,y)= :2—@;,, X*+yie0 &
(xd+.y )d x"‘+y2=0

0
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(3x* +y°)y°
LG y)y=4 (x+y7y
Lx*+y" =0

L X+ 20

2

X +y? .
We note that 2y 2 xy| & 3}; <L (% + Y #0)
X b

3

2xy
(x* + 7y’
Considering (0, 0), we say that f, is bounded in neighbourhood of (0, 0).
Hence f is continuous at (0, 0).

=1 for all (x, y) in deleted neighbourhood of (0, 0).

Examples : Let #(x,y)=(1-2xy+y’)"", show that

J ou 0 ou
- 1_ 2y 7 i B2 =0
ax{( g )ax}+ay{} By}

S P G s S
(1-2xy+ )%y 2 (1-2xp+y")7

Here u,. =

i(u Y=y.3u u, =3y

ox " ¥

d 3 24,2 3 37,5 2
g(u_‘:)=—u +(x—y) 3u ' =—uw +3u(x—y)

Given expression = —2x.u, +2y.u, +(1-x*3y’u’ + y*{—u’ +3u” (x - y)’}

==-3y’ +3y’ (1-2xy + y) = =3y’ +3y*u’ = 0.

xﬁ et
LY

2y If — -
2) a +u b +u

=1 where u=u(x,y). Show that

(Y +(u,) =2(xu,+yu,).

Differentiating given relation,
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— +x - = U Y S =0
a +u (¢ +u) b +u)y

2x H(a* + 2y /(B +
= PN Gitardy u, = 22O ¥
¥ : ¥ oy
(@ +uy (& +uy (@ +u) (b +u)
2 2
a +u b +u 2
So, xu, +yu, = 5 —— = 5 >

x y x ¥y
T T + T T T + T
(@ +uy (B +uy (@ +u) (B +u)

4x* N 4y*
Also .V +(,) = a f”)d (b”f“) - = 4 -

x” y X’ 7
> > + 3 2 T, a2 p? 2
(@ +u) (B +u) (@ +uy (b +u)

Hence 2(xu +yu )= ()" +(u },)2

Sufficient condition for continuity in a region :

If f(x,y) has partial derivatives f,, fy everywhere in a region D & their
derivatives every where in D satisfy the inequalities

| £ (e W) <ML S, (e, ) <M

where M is independent of x and y, then f(x,y) is continuous everywhere in D.
Proof : Let (a, b), (a+ h b+ keD
We can write f{a + h, b+ k) - f{a, B)y=fla+ h b+ k)

—flat+h b)y+flath b)-fla b)

By applying LMV theorem, there exists 0,,8, (0,1} such that
Sa+h b+k)- fla+hb)y=kf,(a+h b+0k)

fla+h b)— fla,b)=hf (a+0,h,b)

So |fla+hb+k)y— fla,B)|<k|| fla+h b+8k|+|h| f(a+8,hb)]
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£ £
<k \M+1h\M<M —+M—
| 7| Xd M M where

)< 8,k 1< 8, 8= %(e > 0 being arbitrary)

= f1s continuous at any point {a, b) of D.
Hence the result follows.

7.3

Directional Derivative

In the definition of f{x,, »;). the point (xr_,+Ar, yo) approaches the point
(%, Jo) along the line y = y, and in the definition of £, (x, y,), the point
(x4, ¥o + Ay) approaches the point (x,, y,) along the line x = x,,. Let us consider
a generalisation of these concepts by replacing the above two special lines by
an arbitrary line through (x,, y,).

A direction £, is used to designate as the direction of any directed line which

makes an angle o with the positive side of x-axis measured in the anti-
clockwise direction.

af . fla+Ascosw, b+ Assina)— f(a,b)
We define K bo.y= j;lglo As > provided the

limit exists.

This means the rate of change of f at the point (x, y) w.rt. distance as we
approach (x, ¥) along the ray that forms an angle o with the positive side of
X-axis.

Result : Let f(x, y) have continuous first order partial derivatives. Then

o

aa—a:fx(x_,y).cosa+f},(x,y).sina

i.e. the directional derivative is a linear combination of f, and £,
Proof : f{a+Ascosa,b+Assina)— f(a,b)

={fla+Ascoso,b)— fla,b)}+{f(a+Ascoso,b+Assina)— f(a+Ascoso,b)}

Let f(x,b) = #(x). Then
Sfla+Ascosa,b)— f(a,b)=t(a+ Ascosa)—-#{a)

By the conditions imposed on £, # is derivable in [a,a+ Ascosal.
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By LMV theorem, there exists 8, (0,1)such that
Ha+Ascosa)—tH{a)=Ascosot’(a+0, Ascosa)
=Ascosq f(a+0,.Ascosct, b)
and taking f(a+Ascosa,y)=g(y) & arguing in a similar way, we get
fla+Ascosa, b+ Assina)— fa+Ascosa,b)

= Assina. f, (@ + Ascosa, b +8,Assino) for some 6, € (0,1)
(f; denotes the p.d. of f w.rt. ith component).

fla+Ascosa,b+Assina)— f(a,b) _
As

Hence

Jila+0, As cosa, b).cosa + f,(a+ As cosa, b +0,Assina) sin &t

Taking As — 0 & using the continuity of f, and fy_, we get

;Tf = f(a,b).cosa+ £, (a,b)sina

Ilustration : Let f(x,y)= \/_(2x2 +y2), a=1=bo=60"

2x ¥y

B I L P
Jex ) 2x+y?)

ai=f(1 1)cos60° + £, (L Dsin 60° = —= -+ 2

2
e, ~ L Dsin = 7

Remarks : (1) The directional derivative can also be defined as follows :

L V5, V3

Let /- § — R where S € R? and ¢ be an interior point of §. Let the line-
segment joining ¢ and ¢ + Au lie in B(c, r) (€ S). Here e R and u describes
the direction of line segment.

Then the directional derivative of f at ¢ in the direction of the unit vector u,
denoted by f' (¢, u) is given by

flerh)y—f(c).

if limit exists.
h

£ e.u)=lim
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If u={a,b)& c=(x,y,), we can write

lim J(x,+ha, y, +hb)- f(x,,y,)

B—0 h

(2) The directional derivative can also be defined as (f, fy). (. q9)

, if limit exists.

where (p, ¢) denotes the unit vector along the given direction (a, b) and
- denotes the usual inner product (dot product).

Note : Existence of p.d’s at a point does not ensure the existence of
directional derivative in any other direction.

For example f: R’ — R be defined by

x+y,if xy=0
f(x,y)={

1, otherwise

lim f“‘no);f(oao) =1mh;° =1= £,0,0)=1

lim L5700 =limk;0 =1= £,(0,0)=1

k=i k k=0
) tath)— (0,00 . 1 .
lrl_l;lufl 1A )r Al )erlff}; does not exist.

7.4

Differentiability at a point

Let f S— R, S be open subset of B* and (g, ) € S.
We say that f is differentiable at (a, b) if

fla+hb+E)- f(a,by= Ah+ Bk +ho(h,k)+ky(h k) (1) where A, B are
independent of #, kand ¢ >0, v —>0 ash > 0, £k - 0.
Fork=0,h=0

flathb)-fab) _, o
I

< B0 Sfla+h b)- f(ab)
' h

As h—>0,0—>0, &soa tends to A.
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= f.(a,b) exists = 4.
Similarly taking # = 0, & = 0, we get

lim fla,b+k)- f(a,b)

Kb k

exists & = B.

= f,(a,b) exists & = B
Also in (1), taking (h, k) — (0, 0) we get
lim fla+hb+k)= f(ab)

(B & )=(0.0)°
So differentiability at a point implies (1) existence of first order partial
derivatives at that point (n) continuity of f at that point.
An important note :
In case of function of one variable,
differentiability at a point < = > existence of derivative at that point .

But in case of functions E* — R, differentiability at a point — existence of
first order partial derivatives at that point (as shown above) but the converse
is not true.

Examples :

P iyrzo
(1) fO,p)=4 (& +)7)
0,x’+y" =0

(i JO+RO-F(0,0) | 0-0 . f(0.0+k)-f(0,0) . 0-0_,

h—0 h =0 h T k50 k k=0
= £.(0,00=0=7,(0,0).
In order to be differentiable at (0, 0), we must have
JO+h,0+k)— £(0,0)=hf(0,0)+ 4 (0,0)+ho +ky
where $ >0,y >0 as 71— 0,k—>0

hi

JO+ k)

= —0=h0+40+ho+ky
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h 1
In particular if h = £, ﬁ=h(<p+w)=>ﬁ=tp+w

As h—>0,¢+y >0 but LHS # 0
So f is not differentiable at (0, 0).

x, if |y x|

2)L =
@l 7y {—y,s‘f|y|2|x|

im £ 0 +4,0) - £(0,0) =11m$=1 (Here h — 0, k = 0 & so >}k

B h h=0
 FO,04K)=F(0,0) . k=0
L‘L“nf( * }3 AL )=?-‘T%T=_l (Here k = 0, h = 0 & so [k[A))

In order to be differentiable at (0, 0), we must have
JO+h0+k)- fO,0)=h1+k(-1)+hp+ iy
where ¢ > 0,y > 0ash—>0,k—> 0.
In particular, if £ = —h, we get
—h==2k-ko+hy=1l=y—-0.
we have RHS -0, LHS =20 as k— 0
So f is not differentiable at (0,0).

-y
B)Let f(x,y)=1x"+y"’
0, x’+y°=0

X4yt =0

lim £ 040~ 7(5,9) =1im$=1 = £.(0,0)=1

=0 h Ti—

lim LGOS0y K20 0.0)=-1
K—0 f( k— k ¥

In order to be differentiable at (0,0), we must have
JO+h,0+k)— f(0,0)=hf (0,0)+kf (0,0)+ o+ ky

where >0,y >0 as h—>0,k—0
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hS _ kS
+k®
In particular, if k = 54,

= =h1+k(-D)+hp+ky

B —125%° 124
o o b Sh+ho+5iy = 22 = 44+ 0+5
W+ 250 o+ Sy = — Py

As h—> 0.RHS — —4 but LHS = %

So f1s not differentiable at (0, 0).
Sufficient condition for differentiability at a point :

Let f: 5 — R where S ¢ R* and let (a, b) €.

Let (1) f, exist at (a, b) (ii) 7‘; be continuous at {a, b).

Then f is differentiable at (a, 5).

Proof : By hypothesis, there exists a neighbourhood of (a, ), say

[a—&,a+6,b—-8,b+5](6>0) in which both £, £, are defined.
we take &, k, ¢ + k2 # 0, so that

{(a+hb+k), (a+h b)e N((a, b),0).
fla+h b+k)- f(a b)

={f(a+h,b+k)—f(a+h,b)}+{f(a+h,b)—f(a,b)}

Sla+h b)- f(ab)
h

As flabyexists, f.(a,h)=lim

. fla+hb)—flab
=>!ff( ; Sfa )_fx(a,b)=€» then ¢ —>0,ash — 0

= fla+hb)- f(ab)=hf (a,b)+chwhere e > 0ash—>0
Next let f(a+h y)=g(»)& so fla+hb+i)- fla+hb)y=g(b+i)-g(b)

We note that existence of f,in N((«,0),8) = existence of
g'yimlb,b+klorin[b+k,b]
By LMYV theorem, there exists 6 <(0,1) such that
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gb+k)—g(b)=kg'(b+0k)=kf (a+h,b+6k)

Consequently f(a+h, b+k)— f(a,b)=hf (a,b)+ ig‘”y(a +h b+0k)+¢eh.
By hypothesis, f} is continuous at (@, ), So
lhl_lg Sla+h b+6k)=f (a,b)

k=0
=1if fla+th b+0k)- f (a,b)=m, then n>0 ash = 0, k = 0.
So f(a+th b+0k)=f(a,b)+n& So
Jla+hb+k)— fla,b)=hf (a,b)+kf (a,b)+eh+nk

where € —> 0,— 0,as (#,k)— (0,0)

= f is differentiable at (a, &).

Remarks : (Alternative set of condition)
If (i) f} exists at (@, &) & (i) f, is continuous at (@, ) then
£ is differentiable at (a, b).

Note : The condition of continuity of one of the partial derivatives at the point
is sufficient only, but not necessary.

Example :
i . 1 i . 1
x“sin—+y sin—, xy =0
x y

s .1
x“sin—, x=0,y=0

Slx,y)=4 X

0 x=0=y

As lingtsin% =0, 50 £(0,0)=0,7,(0,0)=0
.1 1
2ysin——cos—, y =0

- 0
Slx, y)= x x & Hxy)= y y
03 xX= 0 0, }’ = 0
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- 1 , : , :
As lrlilui cos~ does not exist so neither £ nor 7, is continuous at (0, 0).

For differentiability at (0, 0), we must have
JO+h,0+k)= f(0,0)=hf (0,0)+ &f (0,0)+ ho + ky

where ¢ - 0,y =0, A0, k- 0.

= sin%+k2 sin%—0=h0+k0+h(p(h, K+ kg (h, k) ete.

|
We take (k) = hsmz,hiO
0, h=0
ksins k%0
vinky=1""%
0, k=0

Then ¢ - O0ash—>0& y—>0ask—0
So f(x,y) is differentiable at (0,0) though neither /. nor f} is continuous at (0,0).

7.5 Total Differential

If fix, y} be a differentiable function, then %drwglab is called the total
id
differential df of f.

Af = f(x+Ax,y+Ay)— f(x,y) is the total increment.
Av=dx, Ay =dy but Af =df.
Example : If /(x,y) = x> + xy + * — 4 Inx — 10Ilny, find df(1,2)

Here fx:2x+y—i,f‘,_:x+2y—E &
ro Y

Soat (1,2), f.=0,f,=0&df(1,2)=0.
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Examples :
(1) Let f(x,»)=xpl”, (x,y)e R?

1
Show that f 1s differentiable at (0, 0) only if P> 5

First we note that if p < 0, f cannot be defined at (0, 0) : So p=0

For p > 0, lim fO+h,0-f(0.0) . fO0+K)-f(0,0)

h=0 h k=0 k

So £,(0,0)=0=7.(0,0)

In order to be differentiable at (0, 0), We must have
FO+h,0+K) = £(0,0)=h.f,(0,0)+k,(0,0)+e i+ €.k
where €, 50,6, 50 ash > 0,k > 0.
=|hk|=¢h+e,k where ¢, = 0,¢&, > 0as{(#k)=(0,0)
In particular, if & =/ (20)

|1 [?=h{e, (b h)+e.(hh)}

= (|47 =g (b1 +e, (k)

1
Note that if #—0, RHS — 0 but LHS — 0 only when 2p — 1> 0 i.e. p>§

1
So when pEE f cannot be differentiable at (0, 0).

1
Let us consider the case P> E

| Ak |” | 7k |*
h=0 & e,(hk)=
T & &(hky=1—0

0. =0 0. k=0

We take £(hk)= 20
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|#E|” 1 , 1 H+Kk
hE)—0l=——=—|hk|"|k|£=
ey =0= T = S 1Ak | <

-1
e P
} (" +k7)?

1 2 - P_%
=>|el(h,k)—0|52—p(h +k7) 2
Let ¢ >0 be any number

|e,(h,k)—0|<e whenever 0< J(h*+k*) <8

8 = (2p8)]f{2p—1] . p > %
So ¢ =0 as (h,k)—(0,0)
Similarly €, = Oas (h,k)— (0,0)

1
Thus, f(x,y) 1s differentiable at (0,0) when P> 5

6 4
il 2}1 L +y 20

@) Let f(x.y)={ x' +)°
0, x’+y'=0

Show that f is differentiable at (0, 0).

Simple computation shows that f,(0,0)=0= 7 (0,0).

In order to be differentiable at (0,0), we must have
S(O+h,0+k)= £(0,0)=1.£(0,0)+ &, (0,0)+ ho(h, k) + ky(h, k)
where ¢ — 0,y —= 0as (i k)— (0,0).

W-2k

—————0=h0+k 0+ holh Y+ kw(h betc
= ho(h, i)+ k(i k)etc

hj _2k3 e
—— W +k 20 —— W+ =0
We take @(h kY=< +k*’ & whky=n+i*

0, W+k'=0 0, W+k’=0
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Let £>( be any number

Taking A=rcos®, k =rsin®
l@(h, k)= 0| =|* cos* 6| <] r < e

whenever V(x3+}’2)<8%:> lim @(hk)=0

(h,k)=(0,0)

Exactly in a similar way, kl}ij}}o 0 y(hk)=0

So f is differentiable at (0,0)

. 1
(x‘ +y‘)sinT )
@) Let f(x,y)= JEE+Y) 420

0, x+y°=0
Show that £ is differentiable at (0,0) though 7, 7, are not continuous at (0, 0).
L SO+h0)-£(0,0)

, .1
=lim Asin—=0 g
| 7]

b0 h b}
lim (&0 =SO0) o psinL =0
k=0 k k—0 k

In order to be differentiable at (0, 0), we must have
S(0+h,0+k)— £(0,0) = Af,(0,0)+Af,(0,0)+ hp(h, k) + kys (1, k)

where ¢ > 0,y > 0ash—>0k—>0

(" +k%)sin —0=h 0+k O+ho(h k)+ky(hk)etc.

1
V(i +k)

hE';il'l%,h:-h\"t’-2 =0
We take @(h,k)= V(" + k) &

0, W+k’=0
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ksin S+ 20

yiky= NP+
0, W+k*=0

So, >0,y > 0ash—0,k—>0.

Hence f is differentiable at (0, 0).
We know that

X 1

2xsin - cos X+ £0
L p)= VO & +yh) x
0,x’+y" =0
fx Jc)—ZJursinL—LcosL
when x > 0, J\X w2 2wk

= Li_‘}‘_}f;(xa x) does not exist.

= f, 1s not continuous at (0,0). Similarly 7, is not continuous at (0,0).
(4) Let flx,y)=(x+y|+x+y).(x,y)eR".

Show that f is differentiable for all (x,y)eR> if £ >1.

We have deduced earlier that £, f] exist at (0, 0) only if £ > 1.

k28 (x+ y)y

,f x+y>0
0,if x+y<0

When k>1, f.(x,1)= f.(x,y) ={

Both f, and f, are continuous at each point (x,y)e R’ as (x+ y)is also so.
So f is differentiable for all (x,y)e R*if & > 1.
xsin(dtan™ ), for x>0
(5) Let S(x,y)= x
0, forx=0& for all y
Verify the following properties of f at the point (0, 0) :
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0

(i) gf (0,¥)is continuous w.rt. y

0
(i1) af (x,0) is discontinuous w.rt. x

(1) £ is not differentiable at (0,0)

Note that /,(0,y) = lim L2) ; SOV _ fim sin (4tan'1 %) =0

=0+ =0+

=0,

ShO)=F(0.0) . 0-0
h

PN

f.(0,0)= lim

So ling J.(0,y)= f.(0,0)= f.(0,y)is continuous w.r.t. y at (0, 0)

lim -
k=0 k 0

| Lk
fi(x 0)=limf(x,k)—f(x,0)= xSin(4tan ;)(0)
yae k=0 ft’

4x” cos(4tan™ £)

-1 _ 1
lim e+ 1) 4 (by L. Hopital’s rule)
, 0,k)— £(0,0 . 0-0
ﬁ(())()):]l_’mo JO.5=7(0.9 (if 1t exists)=LLmoT=0

So lilgl J,(x,0)= £,(0,0) = f,(x,0) is discontinuous w.r.t. x at (0, 0)

In order to be differentiable at {0,0), we must have

SO+h,0+k)= £(0,0) = hf.(0,0)+4f,(0,0) +e,h+ £,k

where € — 0,&, = 0 as (4, k) — (0,0).
= hsin(4tan™ %)—0 =h0+k0+gh+e,k where .. .

For k = 2h, hsin(4tan™ 2) = (g, +2¢,)h

h # 0sosin (4tan™ 2)=¢ +2¢,
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Ash — 0, RHS - 0, LHS # 0.

So f1s not differentiable at (0,0).
Differentiability of composite function & Chain Rule

Theorem (1) : Let

() x =o(u,v), y=w(u,v) be two functions of #, v defined in a domain
S cR® and differentiable at point (#, v) of §
(i) z = fix,y) be defined on S, c R’ and differentiable at (x, y) of S|.

(i1} §, be the image set of 5. Then z, defined as a function of w, v, is
differentiable at the corresponding point (#, v).

Proof. As z = f(x,y) is differentiable, so

Az= f(x+Ax,y+ Ay) = f(x,y)=f . Ax+ f, Ay +e Ax+e, Ay (1)
where €, - 0,e, 50 as Ar—>0,Ay >0

As x=o(u,v), y=wy(u,v) are differentiable functions, so

A =@+ Au v+ Av)—@(u,v) =@ A+ Avep +e,Au+e,Av

where ¢, - 0,e, > 0asAv >0, Av >0 (2)
Also Ay =wy(u+Au, v+ Av)—y(u,v) =y Au+y Av+e, Au+ e Av (3)
where €, 50,6, 50 as Au >0, Av—=>0

Consequently, by (1), (2) & (3), we have

Az=(f9,+ 0 )Au+(f0,+ W )IAVv+(e, [ +€0, +Eg, +ny5 +E,
+E,8) Au+(fE,+€Q, +EE,+ f €, +E W, +E,E)AY

=(/9, + W )Au+(f o, + LW )Av+nA +n, Ay

We know that differentiability = continuity, so as Aw — 0,Av — 0,

we have Ax — 0,Ay — 0.Therefore as Au — 0,Av — 0,

we get ), > 0,n, >0
So z = F(u,v) is differentiable function of # & v. Also
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oF_ o x T
ou Ox Ou Oy Ou
o _dx Iy
v & v dy v

The last two results are known as ‘Chain rule’.
Theorem 2 : Let in theorem 1, x and y be differentiable functions of single
variable 7 so that the composite function z= f(@(t),y(f))=F(f) can be
defined, then F{(¢) is differentiable function and

i _f b U b

dt odx dt Jdy dt

Here dx = @'(£)At, dv = y'(t)At putting in (1) of theorem 1, we get
Az = L@ ()AL + LW (DA +80 (DA +&,y (DAL

Note that Ax =7+ AN - 91), Ay =y +At)—y(¥)

Here ¢,y are continuous functicns of ¢ and so as

A =0, Ax—>0,Ay>0=¢ —0,e,—20

Therefore z = f(t) is differentiable function of 7 &

dz dzdx dzdy

i e di 5‘; (Chain Rule).

An important note

The differentiability of the concerned functions or the continuity of the first
order partial derivatives can not be dropped.

2

XY o ivi20
Mustration Let z = f(x y)y={x"+"’ Y

0, x’+y°=0
3 2 2 2
_,}zxy,},},xj-i-yg#O e y) (,,x _:,V,,)_,x2+y2¢0
Here f,=q(x +y°) & f,=1 (x+y7)

0, ¥+y°=0 0, x*+y° =0
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In case of both £, and fy_, if we take (x,)) — (0,0) along y = mx, we can infer
that neither /. nor fy is continuous at (0, 0).

Also i + , 0 + k) -~ £0,0) = hf, (0, 0) + kf, (0,0) + efr+ek

where €, = 0,&, = 0 as (h, &) = (0,0) must hold for differentiability at (0,0).

Wk
= P =h 0+k0+eh+ek etc In particular, if # = £
W 1
_2h3 =h(8,+82)=>5=8,+82. But as # —» 0, RHS — 0, LHS = 0.

So f1s not differentiable at (0,0).
We introduce a new variable ‘# by setting x = y = t. We have a composite
function of .

) du o
By chain rule, 7 w.X U,y =

1
But inserting x = y = ¢ in f{x,y), we get ¥ = 51 for all z So

dn 1 H du—ux+u d hold
A ence g ety Yy does not hold.
Note : (Caution) We have seen in case of first order derivative for function
dy dx
. = - :t 0, —=0
of one variable, o g\c / Here dy

This type of relation does not hold in case of function of two variables.

Let x=rcos0,y=rsin® and so r’=x*+y"

O )
:Zr@:n & 2r2=2y:>@=i=cose,g=sin9
ox &y r oy

a—x—cose a——sm@ & So —?ﬁ% %
or or e o
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The relation between a—&@ 8_}&8_9 can also be examined.
30 0x 90 oy

Examples :
(1) Transform the following equation to new independent variables u, v.

y%—x%—o if #=x, v=x+)2

dz o0z du dz ov

i —=— —+— —=2z 1+z 2x
By chain rule ox du dx dv ox

dz dz ou dz ov

=— —+——=z,0+2 2y
ay ou dy vy )
dz dz
Yy——x—=yz +2xyz, —2xyz, =)z,
ox dy
ya_é_xgzo Z —0
So > oy is transformed into P

(2) A function z of the arguments x and vy 1s defined by the equation
x=u+v,y=u'+vi. z=w'+v' (u=v)

|

oz & 3
Show that -~ —3uv, > = E(u +v)
Here taking differentials, dx = du + dv, dy = 2udu + 2vdv & dz = 3u?du +
312y,
From the first two relations
dy —2vdx = Qudu + 2vdv) — (2vdu + 2vdy) = 2{u — v)du

mdu=—2 ger—L g
2(x —v) 2u—-v)

Again dy —2udy = (2udu + 2vdv) —2udu + 2udv) = 2{v —u)dv.

—dv=— gL g
2(u—-v) 2u-v)
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—v 1 w |
dz =3t —dx + dy b+ 307 dx —
S0, ' {u -V 2(x —v) y} {u -y 2(u—v) dy}

= %dx‘ + %a:v
o
As x and y are independent variables, we get
_ 2 y 2 )2 24,2 _ )2 -
@: 3utv+3 u:_3uv&8_z:3u 3 :i(u+v)
ax u-v oy 2m-v)y 2

(3) If the relationship # = f(x, y), v = g(x, v) where f & g are differentiable
functions of x and y, specify x and y as differentiable functions of # & v, prove
that

(uxvy - uyvx)(xuyv -xy,)=1
u=f(x,y)=du= fdx+ fdy=udx+ u},dy

& v=g(xy)=dv=gdr+gdy=vdr+vdy

1 1
From these two, dr= ?(V}.du —udv)y&dy = }(—deu +u.dv)  where

J=uy -uy #0
By hypothesis, x & y are differentiable functions of # & v, so
de=xdutxdv,dy=ydu+ydv & so

—_ v}’ — _"}’ — _vx —_ "x
xu_J?xv_ J s Vo = J:r.yv_J
(vu —uv) J°
’ — = —_y ey 2y
So (uxvy —uy}x)(xuyv XV, ) = (uxvy u}}x){ J2 = J2 =1.

1/ .
@I x=cuv,y= c{(1+u2)(1—v2 )}"2 where ¢ 15 a non-zero constant. show

L aV]
, , v—+u
that 1] 9V _ xap =(. ou ov/ given that V is any differentiable
y1mox oy c(u® +v%)

function of x and y.



NSOU « CC-MT- 08 215

oV _oF ox IV dy _ r otV c(l—v) 2u

) — ¥
By chain rule, Ju ox ou dy u £ d 2(1+u)

W _Wx Wy_, o c(l+u7) > (-2v)
v ax v . w 21-17)2

vl +ul

1 LA Vo
c(u3+v3)=;{ylx XI}'}‘

So VW, +ul, =c(u* +V))[V, - iV}, ]=

(5) Show that whatever the differentiable function ¢ 1s, the relationship

I dz  ,dz
@(cx —az,cy—bz)=0 implies that a—+ pE =
ox dy
By hypothesis, the given relation defines z as a differentiable function of x &
y. Wepat ecx—az=p,cy—bz=q

So ¢(p.q)=0=>do=¢,dp+¢,dg=0

= ¢ (cdc—adz)+ ¢ (cdy—bdz)=0= dz = a(p T zdx+z,dy
P i
¢ ¢
So, z,= L, z, = L . Hence az, +bzy =c
ag, + b(pq ag, + b(pq

(6) By putting & = x* H & changing the independent variables x, y to u, v

Y . ¢ oG _
H=%, v=xy, x +y = nG.
where . 'V, transform the equation % 5

Hence show that G =x H(P[%J where ¢ denotes arbitrary function

0H OH ou aH o y
i — H, +yH,
By chan rule, o o Ebr R +)

0H _oH ou OH ov _ 1
& — —t— —=—H +xH,
&y ou v &y x

Given G=y"H.So G, =m""H+x"H &G, =x"H




216

NSOU « CC-MT-08

So, x¥G_+yG, =nG is transformed into
n"H +x™H_+x" yH, =m"H = xH +yH, =0
Consequently, —%H” +xyH +%H” +xyH, =0=>H =0

So H is independent of v & we get H =¢(u) where ¢ is arbitrary function

Therefore G = x"H [ZJ
b'e

gz Oz
(7) Transform the equation Ebc_x a—(}’ X)z, by introducing new

. . 2 s 1 1 .
independent variables # =x" + y°, v=—+— and the new function
Xy

w=Inz—(x+y).

Taking differentials, dw =2xdx+2ydy, dv=

=2 _(derdy)

Note that dw = g—wdu + %a‘v =w, (2xdx+2ydy)+w, (— df - d};)
u v X

}?
= (wa” - w—;‘)dx+ [2ywu - 1"—"2'}9’}»
x y

=di—(dx+dy)
Zz
So, dz={2xzw, + 2)dx +(2yzw,
_0z 0z
STty
az_ ! —i Y = %z ; _i ; -
So ax_zxz"“ x2u},+a, 3y 2yzw, % W, +z
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Putting in given equation yz,—xz, =(y—x)z, we get

-
-

(2xyzw, —%wv +yz)-(2xyzw, — Xj w, +xz)=(y—x)z
X y

=w, =0

¥

. . 4
So the transformed equation is 3= 0.

|

(8) Transform the equation x2%+ },2@
¢

=z*, taking u=x+y_,v=l—l
y x

11
for new independent variables and W = ;—;for the new function

Taking differentials, du =dx+dy, dv= ﬂ + dx = — = dx
v : z¢ X
F}u.' | ¥ — z
=L du +@dv =w (dx+dy)+w, ﬁz—ﬂz = 61’ +ﬁ2
Ou ov Xy z X
1 1 z’
=dz=z (—2—11"“ ——2wv]dr+—2wv. dy=z.de+z.dy
x x* 7 v '
=z = —:,—zzwu ——:,w‘, &z, = Z; w,
X~ X~ ' -
x? %+ ¥ % _ 2 is transformed into
ox dy

7 =xzw,—zw tzw =z =>w =0,

oW
the transformed equation is 5_: 0.
it

% n?
@) Let f(xy)=4 "y xz0

0,x=0
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Find the points at which f is differentiable.

-

Hence fx(x,y) = {ix13 sinz—yx_g COSX, x#0
3 X X
0,x=0
1 y
f(xyy={x"cos— x=0
‘ X
0,x=0

¥

Due to the continuity of f,, £, at R*\{(0,y): y e R},

NSOU « CC-MT-08

using sufficient condition of differentiability, f is differentiable in

R*\{(0,5): ye R}.

(10) If z = f|xy|, x=1, y=t+1 where t > 0, verify that

does not hold at f = 0, Explain why.

de . dy 2
—=1—=—=1+3¢
Here Tl

fim 00 F0.0) . 0-0

Bl h

Therefore, at =0, ﬁ_£+ﬂ‘%=0‘
dt dx dt oy

Putting x & yin z, z :_\/|t2 +t4| zt\/(1+t2)

dz 5 &
& O e a0, o

dt (1+£%) o

dz Oz dx oz dy
g —EF—.—+—.—
di  Ox dt Oy dt

ZEmTZO: £.0,0)=0, Similarly £,(0,0)=0
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1
We have discussed earlier that |xy|p is differentiable at (0,0) only when P >5_

So |xy| is not differentiable at (0,0) here & this is the reason for failure of
chain rule here.
§ ¥ —4x3y3 _y4
(1) Let o(x,y) =3  (x"+y°)’
0, x+y" =0

Xy 20

Show that ¢ is continuous at (0, 0), has a directional derivative in every
direction at (0,0) but is not differentiable there.

. (=YY =2y (" +y°)
o(x,y)= (x +y)
0, x*+y° =0

, X+ 20

223! 2
So when x°+)° %0, o(x,y) = x{[xq },,] - 22}) 2}
x4y x'+y
So [p(x,y) ~@(0,0)[ < 3[x| <3(| x| +] ¥ ] 1
Let € > 0 be any number. Then

lo(x, ¥)—¢(0,0)| < & whenever || <8,|y|<8&3= % =@ is continuous at
(0,0).

(Also when (x,y) =(0,0), ¢(x, y)is the ratio of two continuous functions & so
it is continuous at all such points).

For any <a, b> # <0,0> & for any =0,

[0, h) = 9(0,0) _ a(a’ ~4ab ~b")
70 p 5

= directional derivative exists in every direction at (0,0).

Putting a=1, b =0, we get ¢,(0,0)=1& puttinga=0, b =1, we get
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¢,(0,0)=0
For differentiability at (0, 0), we must have
@0+ h, 0+k)—9(0,0) = ho (0,0)+k9 (0,0)+g /i +&,k
where €, 5 0,&, 30as 7 = 0, k = 0.
hh -4’k k%)
(EY%
In particular, for # =k (# 0), RHS = A1+ g +¢&,)) &

-0=hl+k0+ech+e,ketc

Rt O W
LH QY "

So —h = h(l+g +¢,)=>-1=1+¢ +¢,
As h — 0, RHS — 1, LHS = -1. So ¢ is not differentiable at (0,0)
Therefore, existence of directional derivative & differentiability at that point.

(12) If f(x,y) be differentiable, then f has a directional derivative in the
direction of any unit vector <ga, >

By hypothesis, if g(#) = fix, + ha, y, + hb), then
(oo EUD=8(O) _ L f Gy ha,y, +hb) = £(x,,%,)

B0 h B0 h

=D, f(x,.¥,)

the directional derivative at (x,, y,) along unit vector < a, b>
Using differentiability of f ;

S ID_
ox dh oy dh

Hence the result follows.

g'ihn = Jo G, v )a+ fL(x, vo) b

7.6 Summary

In this unit, we have defined partial differentiation with some examples. We also
studied directional derivative and total derivative. We have explained differentiability
of composite function and studied the chain rule. The differentiability of a finction
of the variables at a point of its domain imply the existence of first order partial
derivatives at that point but the converse is not true. This is a major departure from
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the relevant result of function of one variable. Examples & results regarding this
have been explained here.

7.7 EXxercises

(1) Examine for the existence of double limit at (0, 0) :

1.2 _
VXY +1) 1’ x3+y3¢0

(a) flxy)= x2+y2

sin{x” +3°)

x,y)= X+ 20
(b) f(x.») iy y
xzyz
x,y)= — X+ P =0
(© SY) oy Y

oo |_=1x=]
2 2
(2) Let f(x,y)= XT=2xy+y ) x#Ey
0 x=y
Show that f is continuous at (0, 0).
Xy a2

—— 7| | -cos(x"+y7) |.(x, ¥} =(0,0)

() Let flr,y)=q(x +y‘)‘[ }
K, (x,y)=(0,0)

Find X, if any, for which f(x, ) is continuous at (0, 0).
(4) Show that the limit

. 1= Tty
Iim fos(i 2y 7)
ep)=00) (x4 y*)x°y”

does not exist.

x’y’ log(x* + 3%), (x, ) # (0,0)
0, (x,y)=(0,0)

Show that f is differentiable at (0,0).

(5) Let f(x,y)={
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(6)

7

@)

®)

(10)

(11)

(12)
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Show that the expression

(3x+y)dx+(x+3y)dy is a total differential of some function #(x, y)
& find u(x,y).

X k) )
— Ty ) y=0

Let S,y =31yl
0,y=0

Examine for the existence of directional derivative at (0,0) & differentiability
of £ at (0,0).
If w=f(ax”+2hxy+by*) and v =q(ax” +2hxy +by’), show that

a[av]_a[av]
—| === u—|.
ay\ ox) okl dy

If w = f(x, y), x=rcos0,y =rsin0;then if the variables x, y are changed to
r, 8, prove that

(au}z ou Y (aujz 1(5;;}3
ox Sy cr r Ao

x, when| y|<| x|
Let f(x,y)=

—x, when|y |2 x|

Examine whether f is differentiable at (0, 0).

Let f be differentiable function where

Sflxy,z-2x)=0

defines z as a differentiable function of x and y.

Show that under suitable condition (s) to be stated by you,

oz Cz
Xx——y—=2x
x
Let z be a differentiable function of # and v where # = x> — )2 — 2xy, v=y .

- oz
prove that the equation (x+ y)a—z+(x— y)a—‘ =0 is equivalent to — =0
ox &y o
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(13) Is f differentiable at the origin

x:{_yz - -
xy.T,x‘+y‘¢0
Jleyy=1 & +y)
0, x*+y°=0
—fyp X+y* 20
(14) Let f(x,y)=q3x"+y
0, x’+y =0

If ¥ =1¢=y for all # = 0, examine whether
i _ S &, b
dt o dt oy dt

If not, explain why.

(15) Let f:R*—> R be defined by

holds at t = 0

fep)=x' -2y -xy
J d d(d
L=2—-3—-&l =—|—
Let 1 ax ay & 2 ax[ay)
Examine whether L,(L,f)=L,(L,f) holds.
(16) Let f(x,y)=(x+")*

(1) find f, and f} at (0, 0) () test for the continuity and differentiability of
fat (0, 0).

N ¥t —4x2y3 _y4
(17) Let f(x,y)={" (*+y°)
0, x*+y =0

X+ Y £0

Show that £ is continuous at the origin, has a directional derivative in every
direction at (0, 0) but is not differentiable at that point.

X JOE+ %)

(18) Let f(x,y)=<|¥| ,x#0
0, y=0
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Examine for the existence of directional derivative at (0, 0) and
differentiability of f at (0, 0).

(19) If z and « be functions of x and y defined by
{z —(p(u)}2 =’y —u ) {z—0)}. o' @)=ux’
show that ox o
{Compute differential ¢z in terms of dx & dy)
(20) If for all values of the parameter A and for some constant »,
F(dx,My)=A" F(x, y)identically, where F is differentiable function of
x & vy, show that
% %
x£+y£ =nf(x,y).
ox Ty
(21) Find the boundary and interior, exterior for each of the following subsets
of R?
(@) A={(x,y)eR?|y =0}
(b) B:{(x,y)eR2|x>0 and y =0}
(¢c) C=AUB
(d) D={(x,y)eR*|xe 0}
7.8 Further Readings
1. Demidovich, B : Problems in Mathematical Analysis (Mir Publishers).
2. Malik & Arora . Mathematical Analysis (Wiley Eastern).
3. Mukherjee S K : Advanced Differential Calculus of several variables — (Fifth
Edition) (Academic Publishers)
4. Wider David : Advanced Calculus (Prentice Hall).
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